首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Permeability differences in multi-cycle loess–paleosol aeolian sediments, which are still poorly understood, have the potential to significantly improve our understanding of climatic change during the glacial–interglacial periods of the Quaternary. In this study, the permeability of a well-preserved and continuous loess–paleosol sequence in the South Jingyang Plateau was investigated. Weathering intensity was inferred using a series of climate proxies including grain-size distribution, magnetic susceptibility and mineralogy. The results of laboratory tests showed that the average saturated hydraulic conductivity of loess layers is higher than that of paleosol layers. Also, clear differences between loess and paleosol were found in terms of depth variations of the vertical and horizontal saturated hydraulic conductivities. Differences in loess–paleosol were also found for other proxies for pedogenic weathering [i.e. clay content, sand content, Kd value (ratio of coarse silt to clay), magnetic susceptibility, dolomite content and the ratios of hornblende/illite and hornblende/chlorite]. Our results showed a high permeability of loess layers associated with weak pedogenic weathering during cold/dry paleoclimatic conditions in glacial stages. On the contrary, paleosol layers developed in a warm/humid climate during the interglacial stages experienced strong pedogenic weathering that resulted in lower permeability. Based on these results, we construct a connection between Quaternary climate change theory and the modern hydrological system. This provides a scientific basis for investigating the distribution and pollution of groundwater resources in the local region. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
Major chemical elements and Rb, Sr, Ba abundances were measured for loess samples from Chashmanigar loess-soil sequence in southern Tajikistan. And the degree of element loss and intensity of weathering of the samples were calculated. From these calculations we found that the paleosol horizons of the Chashmanigar section were chemically weathered to some extent and the weathering intensity of the soils is stronger than that of loess horizons, indicating that paleosols in southern Tajikistan were deposited in relatively warm and humid interglacial ages. In addition, the southern Tajikistan loess deposited before 0.9Ma BP was more intensely weathered than that deposited after 0.9Ma BP, which may imply the intensification of aridity in this area since 0.9Ma BP.  相似文献   

3.
In recent years, the loess deposits in Central Asia have attracted increasing attention of Qua-ternary paleoclimate researchers[1—8]. The centre of the loess deposits in this area is located in southern Tajikistan, where thick and continuous loess sectio…  相似文献   

4.
A high-resolution mineral magnetic investigation has been carried out on the Jingbian loess/paleosol sequence at the northern extremity of the Chinese Loess Plateau. Results show that the magnetic assemblage is dominated by large pseudo-single domain and multidomain-like magnetite with associated maghemite and hematite. Variations in the ratios of SIRM100mT/SIRM, SIRM100mT/SIRM30mT and SIRM100mT/SIRM60mT (SIRM is the saturation isothermal remanent magnetization; SIRMnmT represents the residual SIRM after an n mT alternating field demagnetization) have been used to document regional paleoclimate change in the Asian interior by correlating the mineral magnetic record with the composite δ18O record in deep-sea sediments. The long-term up-section decreasing trend in those ratios in both loess and paleosol units has been attributed to a long-term decrease in the relative contributions of eolian hematite during glacial extrema and of pedogenic hematite during interglacial extrema, respectively, which reveals a long-term decreasing trend in chemical weathering intensity in both glacial-stage source region (the Gobi and deserts in northwestern China) and interglacial-stage depositional area (the Loess Plateau region). We further relate this long-timescale variation to long-term increasing aridification and cooling, during both glacial extrema in the dust source region and interglacial extrema in the depositional area, over the Quaternary period. Changes in those ratios are most likely due to Quaternary aridification and cooling driven by ongoing global cooling, expansion of the Arctic ice-sheet, and progressive uplift of the Himalayan–Tibetan complex during this period.  相似文献   

5.
The relationship between the carbon isotopic composition of paleosols and pale-ovegetation on the Loess Plateau is still unclear. One of the main reasons is that we are short of knowledge about the characteristics of the carbon isotopic composition of modern soil in this area. A preliminary investigation of the carbon isotopic compositions of the modern soil and the loess/paleosol sequence on the Loess Plateau shows that the carbon isotopic composition of modern soil is consistent with the distribution of modern plants on the Loess Plateau, where the ecosystem is dominated by a mixture of C4 and C3 plants. Comparing the δ13C values of modern soil and loess-paleosol sequences from the Xunyi profile, we conclude that C3 plants dominated the landscape during loess sediment stages, while C4 plants expanded during paleosol stages.  相似文献   

6.
The dominant magnetic minerals and carriers of magnetic signals within the Chinese Loess Plateau are magnetite, maghemite, hematite, and goethite. In this study, we investigated the provenance and evolution of magnetic minerals during loess pedogenesis, using X-ray diffraction (XRD) and optical and electron microscopy, including field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Our results reveal that single- and multiphase mineral assemblages among magnetic minerals in the loess-paleosol sequence have been formed. Partial oxidation of coarse eolian magnetite has occurred in the desert source area and the oxidation degree is enhanced after deposition of the dust upon the Chinese Loess Plateau. This mode of origin resulted in a microtexture consisting of an inner magnetite core surrounded by a hematite rim, and strongly affected the magnetic characteristics of the loess. Goethite coexists with hematite in the loess and paleosol, and nanometer-scale hematite is formed upon goethite rims via dehydration. Our study provides direct mineralogical evidence of the magnetic record and paleoclimatic implications of the loess-paleosol sequence of the Chinese Loess Plateau. Supported by National Natural Science Foundation of China (Grant Nos. 40772032 and 40573054) and National Basic Research Program (Grant No. 2007CB815603)  相似文献   

7.
Rapid East Asian Monsoon oscillations recorded by Chinese loess are thought to be dynamically linked to north Atlantic climate. However, few efforts have been made to assess the effects of post-depositional processes (e.g., surface mixing and pedogenesis) on loess paleoclimatic records. Here a detailed optically stimulated luminescence dating of a thick loess sequence from the western Loess Plateau is presented, offering a reliable chronology for last glacial deposits. Magnetic susceptibility and mean grain size records from three loess–paleosol sequences along a northwest–southeast transect are investigated to evaluate impacts of post-depositional processes on these loess-based proxy records. Our results indicate that: (1) loess sequences developed within the flat tableland of the central and western Loess Plateau are nearly continuous during the last glaciation; and (2) post-depositional processes have distinct impacts on rapid monsoon signals recorded in loess sequences from different regions. In the central Loess Plateau, rapid monsoon signals have been attenuated to various degrees depending on the sedimentation rate and pedogenic intensity. In the northwestern Loess Plateau, however, due to high sedimentation rate and relatively weak pedogenesis, high-resolution grain size oscillations reliably record rapid monsoon changes and can be well correlated to rapid climate changes recorded in the Greenland ice core and Hulu cave stalagmite.  相似文献   

8.
The Mangshan loess on China’s Central Plain, located on the transitional zone between the uplifting Loess Plateau and the subsiding North China Plain, is a proximal sandy loess transported from the fanhead of alluvial fan in the lower reaches of the Yellow River and has recorded the coupling effect of the tectonics and climate over the last 200 ka. An abrupt environmental change indicated by the abrupt rise of deposit rate in the late penultimate glaciation, about 150 ka BP, took place; that is, the Yellow River downcut and moved eastwards through the Sanmenxia Gorge and transported abundant materials from the Loess Plateau to form paleosol S1 with a thickness of 15.7 m and loess L1 with a thickness of 77.3 m. The loess-paleosol sequence at Mangshan has not only recorded detailed climate responses of this area to the East Asian monsoon, but also reflects the tectonogenetic environmental effect caused by the trunk stream of the Yellow River cutting through Sanmenxia Gorge into sea. Project supported by the National Natural Science Foundation of China (Grant No..49572132).  相似文献   

9.
Geochemical study of boron isotopes in the process of loess weathering   总被引:1,自引:0,他引:1  
Different types of sedimentary rocks and magmatic rocks show significant variations in their boron isotopic composition, with d 11B values usually within the range of -40? 30塠1]. The boron content of the continental crust is approximately 10?0-6, with …  相似文献   

10.
Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemical composition of AI phase of loess and paleosols is distinctive to the average composition of upper continental crust (UCC), characterized by depletion of mobile elements Na, Ca and Sr. The distribution pattern of elements in AI phase reveals that initial dust, derived from a vast area of Asian inland, has suffered from Na- and Ca-removed chemical weathering compared to UCC. Some geochemical parameters (such as CIA values, Na/K, Rb/Sr and87Sr/86Sr ratios) display a regular variation and evolution, reflecting that the chemical weathering in the source region of loess deposits has decreased gradually since 2.5 Ma with the general increase of global ice volume. This coincidence reflects that the aridity of Asian inland since the Quaternary is a possible regional response to the global climate change.  相似文献   

11.
The soil in the Loess Plateau has special permeability characteristics due to the alternating distribution of loess and paleosol layers. Using an analysis of the physical properties, microstructure and thermogravimetric analysis of loess and paleosol, this paper examines strata seepage mechanisms in the loess tableland area and considers the applicability of a hydraulic conductivity empirical formula. The analysis shows that hydraulic conductivity attenuation with depth can be represented by a negative exponential model, while hydraulic conductivity values are not normally distributed. The best-fitting models of hydraulic conductivity in the horizontal (KH) and vertical (KV) directions are Gaussian models, and both have strong spatial correlations. This study of the difference in permeability between loess and paleosol found that the depositional environment was the dominant causal factor, making the average hydraulic conductivity of most loess layers greater than that of the underlying paleosol layers. Different microstructures between loess and paleosol also confirmed the microscopic explanation in permeability anisotropy and their permeability difference. Thermogravimetric analysis determined temperature ranges for different types of water lost by heat, and then calculated ratios of bound water mass to liquid limit, with an average of 0.768. A modified formula suitable for loess was obtained by integrating the consistency index method and effective porosity ratio model into the hydraulic conductivity empirical formula. Compared with the results of laboratory tests and uncorrected formulas, the modified formula provides a good estimate of strata hydraulic conductivity. Accurate understandings of seepage mechanisms and permeability differences in the loess area are important, promoting ecological restoration and providing scientific guidance for the sustainable development of the Loess Plateau.  相似文献   

12.
以黄土高原西北缘的靖远和古浪剖面(包含黄土层L1上部和占土壤层SO)作为研究对象,选取代表性样品进行磁化率、频率磁化率、热磁曲线、等温剩磁获得曲线和磁滞回线等测定.结果表明,靖远和古浪L1黄土和SO古土壤具有相似的岩石磁学特征.磁性矿物含量相对较低,载磁矿物均以磁铁矿为主,同时含有磁赤铁矿和赤铁矿,且SO占土壤中的磁赤...  相似文献   

13.
The concentrations of Rb and Sr, and magnetic susceptibility in loess and paleosol samples from the Luochum profile have been measured. The loess units deposited in different geological periods display a very similar pattern of Rb and Sr distribution while paleosol units exhibit a dramatic increase in the Rb/Sr ratio, ranging from 20% to 120% in increase amplitude. Owing to different geochemical behavior of the two elements, Rb appears to be immobile while Sr appears to be mobile in the processes of weathering and pedogenesis. So variations of the Rb/Sr ratio in the loess-paleosol sequences could reflect intensities of weathering and pedogenesis, thus recording the relative wind strength of the East Asian summer monsoon circulation. This could be supported by the high degree of cornlation between the Rb/Sr ratio and the magnetic susceptibility. A continuous record of the Rb/Sr ratio in the Luochuan profile over the last 800 ka bears a striking resemblance to the δ18 O curve of the deep sea sediments and is in accordance with the SPECMAP chronology. Such similarity between the terrestrial and the deep sea records suggests that variability in global ice volume is a primary dynamic factor controlling long-term changes of the East Asian summer monsoon intensity. Project supported by the National Natural Science Foundation of China (Grant No. 49725307).  相似文献   

14.
The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon. In this study, 2181 samples from the Changwu and Xifeng loess sections are analyzed and two high-resolution paleo-weathering timeseries of the last 1.2 Ma are generated, using the ratio of CBD extractable free Fe2O3 (FeD) versus the total iron (FeT). This new index is compared with micromorphological features, low-frequency magnetic susceptibility, frequency-dependent magnetic susceptibility, and the Rb/Sr ratio[5,6]. The results suggest that the FeD/FeT ratio is able to better reflect the degree of soil development. Since the chemical weathering of loess in the Loess Plateau region mainly depends upon the summer precipitation and temperature under modern climate condition, which are closely associated with strength of summer monsoon, and the chemical weathering intensity of loess primarily reflects the variations of the summer monsoon circulation.  相似文献   

15.
Morphological characteristics and microstructures of magnetic minerals extracted from Chinese loess and paleosols were investigated using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Our results indicate that maghemite in loess–paleosol sequences was transformed from magnetite through oxidation of magnetite. Maghemite transformed from eolian magnetite during chemical weathering has low-angle grain boundaries among maghemite nano-crystals. Some nano-crystalline maghemites with nanoporous texture resulted from microbe-induced precipitation of magnetite or transformation of poorly crystalline ferric Fe (oxy)hydroxides in presence of Fe-reducing bacteria. Aggregates of euhedral maghemite nano-crystals were transformed from magnetite magnetosomes. Both microbe-induced nanoporous magnetite and microbe-produced magnetite magnetosomes are directly related to microbial activities and pedogenesis of the paleosols. It is proposed that the formation of nano-crystalline maghemite with superparamagnetic property in paleosol results in the enhancement of magnetic susceptibility, although the total amount (weight percent) of magnetic minerals in both paleosol and loess units is similar. Our results also show that nano-crystalline and nanoporous magnetite grains prefer to transform into maghemite in semi-arid soil environments instead of hematite, although hematite is a thermodynamically stable phase. This result also indicates that a decrease in crystal size will increase stability of maghemite. It is also inferred that surface energy of maghemite is lower than that of hematite.  相似文献   

16.
Thermally transferred optically stimulated luminescence (TT-OSL) dating extends the age range beyond current limits of OSL dating in Chinese loess. In this study, we use a single-aliquot regenerative-dose procedure for TT-OSL protocol to date Yaochangwan and Hejialiang localities of loess-covered Liangshan Paleolithic sites in Hanzhong Basin, which is an important area for the study of Paleolithic industries during the middle Pleistocene in central China. The results suggest that buried culture layer at the Hejialiang locality is correlated with the last interglacial paleosol S1 in Chinese Loess Plateau, it is dated at 86.3 ± 6.4 ka. The Yaochangwan locality spans from approximate 600–100 ka and correlates with S5–S1 in the typical Chinese loess–paleosol sequences, respectively. These ages suggest that hominins already occupied the Hanzhong Basin since approximately 600 ka ago.  相似文献   

17.
Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou.Two stages can be recognized during the process of in situ weathering of dolomitite:the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil.Ni,Cr,Mo,W and Ti are the least mobile elements with reference to Al.The geochemical behavior of REE is similar to that observed in weathering of other types of rocks.Fractionation of REE is noticed during weathering,and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment.It is considered that the chemistry of the upper part of the profile,which was more intensively weathered,is representative of the mobile components of the upper curst at the time the dolomitite was formed,while the less weathered lower profile is chemically representative of the immobile constitution.Like glacial till and loess,the "insoluble" materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust.  相似文献   

18.
Vegetation is an important factor in maintaining ecological balance and improving eco-environment. For improving environment, vegetation cover, as a substitute for the integrated action of stems and leaves, seems to be a crucial factor. However, recent st…  相似文献   

19.
We have conducted detailed rock magnetic experiments on samples from loess unit 8 (L8) and paleosol unit 8 (S8) in Jingbian, Yichuan and Duanjiapo loess sections along an N-S transect in the Chinese Loess Plateau. Major rock magnetic results are as follows: (i) An increase of high field susceptibility (χh) in the same level of loess or paleosol from north to south is observed, suggesting an enhancement of pedogenesis. (ii) The low field susceptibility(χL) in loess unit L8 is almost the same in three sections. In contrast, the χL of paleosol unit S8 in Yichuan is highest, and the χL of Duanjiapo is lower than that in Yichuan section, suggesting that there is not correlation between the χL and the degree of pedogenesis in loess-paleosols. (iii) With the increasing of χL, both the contents of the superparamagnetic (SP) and the ferrimagnetic grains in loess-paleosol increase, however, the enhancement of magnetic susceptibility is probably dependent more on the increase of the ferrimagnetic concentration than on a change in the grain size. (iv) The content of the maghemite in loess unit 8 increases from the northern to the southern part of the Chinese Loess Plateau, and is positively correlated with the pedogenesis of the loess.  相似文献   

20.
Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou. Two stages can be recognized during the process ofin situ weathering of dolomitite: the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil. Ni, Cr, Mo, W and Ti are the least mobile elements with reference to Al. The geochemical behavior of REE is similar to that observed in weathering of other types of rocks. Fractionation of REE is noticed during weathering, and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment. It is considered that the chemistry of the upper part of the profile, which was more intensively weathered, is representative of the mobile components of the upper curst at the time the dolomitite was formed, while the less weathered lower profile is chemically representative of the immobile constitution. Like glacial till and loess, the “insoluble” materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号