首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
熔积岩指的是侵入、混合到未固结或弱固结的湿沉积物中的熔浆分解、原位形成的一类特殊岩石。正确地认识该类岩石,有利于增进人们对岩浆-水(沉积物)相互作用过程的理解,恢复古环境。在青海南部沱沱河地区发现了一套角砾为撕片状、锯齿状及浑圆状的安山岩,胶结物为铁硅质组合的特殊熔积岩。研究表明,该熔积岩的角砾为岩浆遇水后快速淬火、裂解的产物,铁硅质组合为海底喷气沉积形成的含铁建造;且安山岩与含铁建造发生混合时,含铁建造尚未固结。该套熔积岩的发现,改变了长期以来对开心岭铁矿为火山热液交代安山岩而形成的认识,对于在矿区寻找VMS型矿床、区域内寻找海底热水喷流沉积型矿床具有重要的启示意义。  相似文献   

2.

Palaeozoic intrusive rocks of the New England Batholith from the Rockvale district in the southern New England Orogen form three distinct associations: (i) the Carboniferous Rockvale Adamellite, a member of the Hillgrove Suite of deformed S‐type granitoids; (ii) a small I‐type igneous complex on the northwestern margin of the Rockvale Adamellite: several members of this complex have similar chemical compositions to the most mafic members of the Moonbi Suite of New England Batholith I‐types; and (iii) a suite of dyke rocks ranging in composition from calc‐alkaline lamprophyre through hornblende and biotite porphyrite to aplite. Ion‐microprobe U‐Pb zircon analysis indicates intrusion of the Rockvale Adamellite at 303 ±3 Ma (weighted mean 206Pb/238U age; 95% confidence limits). Preliminary investigation of zircon inheritance within the Rockvale Adamellite is consistent with chemical and isotopic indications of derivation of New England Batholith S‐type granitoids from a relatively juvenile protolith. Deformation of the Rockvale Adamellite occurred after complete crystallization of the pluton and prior to emplacement of dykes and I‐type intrusives. K‐Ar biotite and hornblende ages show broadly synchronous intrusion of I‐type magmas and lamprophyre dykes at ca 255 Ma, indicating that mantle magmatism associated with lamprophyres was contemporaneous with the crustal production of I‐type melts. Chemical similarities between the most mafic Moonbi Suite members and calc‐alkaline lamprophyres may also indicate a direct mantle contribution to some I‐type magmas.  相似文献   

3.
Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection.Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development.Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure.Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.  相似文献   

4.
Assimilation serves as a significant part in magma's evolution. Because of rapid cooling of ultramafic‐mafic magma, assimilation between mantle‐derived magma and crustal rocks (wall‐rocks) is often neglected. The Beidaihe diabase dikes in North China Craton suggest that assimilation of the rapidly cooled mantle‐derived magma can not be ignored. The diabase dikes are very thin (0.5 to 2 m in width) and discordantly intrude into Ordovician limestone. Center of dyke is porphyritic texture while chilled margin of it is aphanitic texture, suggesting a rapid crystallization process. Moreover, limestone close to the dyke was transformed into marble because of contact‐thermal metamorphism. From the center to margin of the dykes, contents of SiO2 (48.9→ 41.6 wt.%) and MgO (8.3 → 4.0 wt.%) are obviously decreased, but contents of CaO (6.4→8.3 wt.%) and CO2 (0.8 → 5.2 wt.%) are distinctly increased. Meanwhile, calcites in the wall rocks adjacent to and far from the dykes are also greatly different. The calcites close to the dykes have high MgO and FeO contents but low CaO and CO2 contents. All these suggest an assimilation process of the mantle‐derived magma with wall‐rock limestone. Calculating CO2 contents in the dyke and wall rock suggest that the extent of assimilation is thought to reach up to 8 ‐ 12 %. Therefore, when the wall rocks of the mantle‐derived magma are carbonate rocks, its components are obviously influenced by assimilation, although it often rapidly chilled. Simultaneously, this study provides possible explanation for some mantle‐derived rocks in carbonate areas with high LOI.  相似文献   

5.
Mafic dykes intrude the composite Mt. Abu granite batholith as a minor and the last phase of magmatism. The dykes are sub-vertical, variable in width and visibly compact, however, features of alteration and shearing can be seen. The dykes occurring within the recently identified and described, Delwara Shear Zone (DWSZ), from the western margin of the Mt. Abu batholith are intensely to moderately sheared and intricately mixed with the host granitoids. The mafic dykes occurring within the shear zone bear evidence of assimilating the host granitoids during their ascent, seen as relicts, streaks and sub-rounded K-feldspar clasts in mafic dykes. The hybridization has resulted in unusual geochemical signatures of the mafic dykes such as higher silica levels, erratic and high incompatible trace element abundances and lack of any systematic trends. Mixing line calculations on the mafic dyke samples reveal between 30 to 60% felsic input into the mafic dykes. Mafic dykes outside the shear zone in the Mt. Abu are meter scale in width and generally free of felsic inclusions owing to small volumes of mafic melts. Large volume of mafic melts are required for assimilating up to 60% felsic component which has been identified as approximately 100 m wide zone within the DWSZ. Shearing has played an important role in providing the channel ways and for sustained high temperatures to allow such hybridization.  相似文献   

6.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

7.
The Woods Point dyke swarm comprises hundreds of narrow, subparallel igneous dykes and dozens of pipe-shaped dyke bulges within strongly deformed early Palaeozoic turbidites of the Melbourne trough. Porpylitic alteration accompanied dyke emplacement and was followed by microfracturing induced by high fluid pressures, involving CO2 of magmatic origin, as the dykes solidified. Further stress caused through-going faults having ladder and other patterns. Isotopic studies suggest that metamorphically or geothermally-derived solutions filled the faults and other fractures with quartz and carbonate and altered immediately adjacent dyke rock. However earlier-formed vein and wall rock carbonates retained their magmatic isotopic composition. Fluid inclusions indicate vein deposition began at approximately 400°C with salinities up to 9 weight percent NaCl. Nine sulfide minerals and gold were deposited in the veins after ankerite, sericite and albite, while quartz deposition continued through all stages. Sulfur isotopic determinations indicate the vein sulfur could not have been derived from adjacent sedimentary rocks, nor exclusively from the dykes. Metamorphic waters of marine origin is a viable source for sulfur. Saline and CO2-rich alkaline solutions reacted with the dyke wall rocks and probably evolved chemically prior to deposition of gold. Vug carbonates deposited by meteoric water that leached vein carbonates mark the end of vein formation.Present Adress: 631 Station Street, North Carlton 3054, Victoria, Australia  相似文献   

8.
The widespread records of mafic intrusives (both sills and dykes) are reported from the Proterozoic sedimentary basins of the Indian Shield. Amongst them, the Bijawar basin is also intruded by Paleoproterozoic (ca. 1.98−1.97 Ga) mafic sills. We provide first hand information on petrological and geochemical characteristics of these mafic sills together with a few NW-trending mafic dykes belong to the Jhansi swarm emplaced within the Bundelkhand craton, adjacent to the Bijawar basin. These Paleoproterzoic mafic intrusive rocks, i.e. sills and dykes, are believed to be integral parts of the Jhansi LIP, identified in the Bundelkhand craton. The studied mafic magmatic samples are medium- to coarse-grained and contain doleritic mineral compositions and textures. Geochemically, the mafic sill samples of the Bijawar basin, which belong to the Darguwan-Surjapura mafic sills (DSMS), are sub-alkaline basaltic-andesite to andesite in character. They are co-genetic in nature and show close geochemical similarities with a set of NW-trending mafic dykes (low-Ti) emplaced in the Bundelkhand craton. On the other hand, another set of NW-trending mafic dykes (high-Ti) of the Bundelkhand craton have distinct geochemical nature; likely to have different genetic history. The rare-earth element contents and trace-element modeling suggest that the DSMS and low-Ti dyke samples are likely to be derived from a melt generated ≥20 % melting of a shallower mantle source (spinel stability field), whereas the high-Ti dyke samples show their derivation from a melt generated through ≤15 % melting of the similar mantle source but at deeper level (garnet or garnet-spinel transition stability field); with a substantiate percentage of olivine fractionation of melts before crystallization. Their emplacement in an intracratonic tectonic regime and role of plume in the genesis of these rocks are suggested. The geochemical signature also indicates the role of an ancient (Archean) subduction event that has metasomatized the mantle before the cratonization. Their spatiotemporal correlation with other similar magmatic events of the globe indicate that the Bundelkhand craton was closer to the Karelia-Kola craton (Baltica Shield), North China craton and northern Superior craton, which could be part of the Columbia supercontinent, during its assembly.  相似文献   

9.
Numerous early Cretaceous mafic and alkaline dykes, mostly trending in N-S direction, are emplaced in the Archaean gneissic complex of the Shillong plateau, northeastern India. These dykes are spatially associated with the N-S trending deep-seated Nongchram fault and well exposed around the Swangkre-Rongmil region. The petrological and geochemical characteristics of mafic dykes from this area are presented. These mafic dykes show very sharp contact with the host rocks and do not show any signature of assimilation with them. Petrographically these mafic dykes vary from fine-grained basalt (samples from the dyke margin) to medium-grained dolerite (samples from the middle of the dyke) having very similar chemical compositions, which may be classified as basaltic-andesite/andesite. The geochemical characteristics of these mafic dykes suggest that these are genetically related to each other and probably derived from the same parental magma. Although, the high-field strength element (+rare-earth elements) compositions disallow the possibility of any crustal involvement in the genesis of these rocks, but Nb/La, La/Ta, and Ba/Ta ratios, and similarities of geochemical characteristics of present samples with the Elan Bank basalts and Rajmahal (Group II) mafic dyke samples, suggest minor contamination by assimilation with a small amount of upper crustal material. Chemistry, particularly REE, hints at an alkaline basaltic nature of melt. Trace element modelling suggests that the melt responsible for these mafic dykes had undergone extreme differentiation (∼ 50%) before its emplacement. The basaltic-andesite nature of these rocks may be attributed to this differentiation. Chemistry of these rocks also indicates ∼ 10–15% melting of the mantle source. The mafic dyke samples of the present investigation show very close geochemical similarities with the mafic rocks derived from the Kerguelen mantle plume. Perhaps the Swangkre-Rongmil mafic dykes are also derived from the Kerguelen mantle plume.  相似文献   

10.
We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb–Cu–Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.  相似文献   

11.
陈宁华  董津津  厉子龙  倪妮娜 《岩石学报》2013,29(10):3540-3546
新疆北山地区广泛发育晚古生代侵入岩和基性岩墙群。本文利用多源高分辨率卫星遥感影像(ETM+, SPOT,CORONA KH4B, Geoeye1,Quickbird2)在该区约26880km2范围定量提取基性岩墙1375条。基性岩墙侵入石炭、二叠系火山岩、侵入岩、沉积岩和前寒武纪变质岩。岩墙单体长250m至34km,平均长度5km,厚度从1m至31m,平均厚度7.9m,岩墙长度和厚度均呈负指数分布。约70%的岩墙呈NNW-NNE方向展布。受NEE向走滑断层影响,在断裂带附近岩墙发生强烈扭曲。从北到南垂直岩墙的主要走向,取3条剖面,分段统计岩墙的厚度并计算伸展量。结果表明:该区二叠纪地壳伸展量为0.59%~2.01%,自南向北伸展率逐渐减小,在侵入岩体伸展量高达8.32%,沉积岩/变质岩区的伸展量为0.05%~0.3%。该区二叠纪基性岩墙发育与侵入岩体有密切的时空关系并受断裂控制和改造。  相似文献   

12.
Paleoproterozoic mafic igneous rocks (2450–1970 Ma) are exposed in the form of layered intrusions, dykes, and volcanic rocks in the Karelian, Kola and Murmansk provinces and in the form of dykes and small intrusions in the Belomorian Province, Eastern Fennoscandian Shield. The age and sequence of mafic dyke emplacement during the Paleoproterozoic are very similar in these regions. Further comparisons of geochemical characteristics of mafic dyke swarms in the Belomorian Province and neighboring cratons show considerable similarities.  相似文献   

13.
The Trooper Creek Formation is a mineralised submarine volcano‐sedimentary sequence in the Cambro‐Ordovician Seventy Mile Range Group, Queensland. Most of the Trooper Creek Formation accumulated in a below‐storm‐wave‐base setting. However, microbialites and fossiliferous quartz‐hematite ± magnetite lenses provide evidence for local shoaling to above fairweather wave‐base (typically 5–15 m). The microbialites comprise biogenic (oncolites, stromatolites) and volcanogenic (pumice, shards, crystal fragments) components. Microstructural elements of the bioherms and biostromes include upwardly branching stromatolites, which suggest that photosynthetic microorganisms were important in constructing the microbialites. Because the microbialites are restricted to a thin stratigraphic interval in the Trooper Creek area, shallow‐water environments are interpreted to have been spatially and temporarily restricted. The circumstances that led to local shoaling are recorded by the enclosing volcanic and sedimentary lithofacies. The microbialites are hosted by felsic syneruptive pumiceous turbidites and water‐settled fall deposits generated by explosive eruptions. The microbialite host rocks overlie a thick association (≤?300 m) of andesitic lithofacies that includes four main facies: coherent andesite and associated autoclastic breccia and peperite; graded andesitic scoria breccia (scoriaceous sediment gravity‐flow deposits); fluidal clast‐rich andesitic breccia (water‐settled fall and sediment gravity‐flow deposits); and cross‐stratified andesitic sandstone and breccia (traction‐current deposits). The latter three facies consist of poorly vesicular blocky fragments, scoriaceous clasts (10–90%), and up to 10% fluidally shaped clasts. The fluidal clasts are interpreted as volcanic bombs. Clast shapes and textures in the andesitic volcaniclastic facies association imply that fragmentation occurred through a combination of fire fountaining and Strombolian activity, and a large proportion of the pyroclasts disintegrated due to quenching and impacts. Rapid syneruptive, near‐vent aggradation of bombs, scoria, and quench‐fragmented clasts probably led to temporary shoaling, so that subsequent felsic volcaniclastic facies and microbialites were deposited in shallow water. When subsidence outpaced aggradation, the depositional setting at Trooper Creek returned to being relatively deep marine.  相似文献   

14.
Isolated outcrops of coarse‐ and medium‐grained, quartz‐feldspar porphyry occur for some 60 km from Nobles Nob to near Warrego in the Early Proterozoic Tennant Creek Block of the central Northern Territory. The outcrops appear to be part of an approximately conformable sheet of variable thickness (several tens to a few hundred metres), enclosed by sedimentary rocks of the Warramunga Group. The porphyry is characterized by euhedral, complete, evenly distributed crystals up to 2 cm across, in a microcrystalline groundmass. In some samples the groundmass shows relict perlitic cracks and was formerly coherent glass. In detail, upper and lower contacts of the porphyry sheet are highly irregular: porphyry contains wisps, blocks and large rafts of sandstone, and sandstone encloses single euhedral crystals and blebs, tongues and lobes of porphyry. Clasts of each rock type commonly have fluidal shapes. Sedimentary rocks at both the upper and the lower contacts are indurated and silicified. Close to the contacts, bedding is not easily identified, or else is disturbed. The quartz‐feldspar porphyry is interpreted to have cooled and solidified from phenocryst‐rich magma that intruded approximately parallel to bedding in the enclosing sedimentary sequence. The peperite margins of the sill suggest that the porphyritic magma invaded relatively weak, poorly consolidated, wet sediments rather than solid sedimentary rock. Rapid expansion and movement of heated pore fluid would have temporarily disrupted particle packing in the sediments at the contacts, and allowed intricate penetration of magma accompanied by quenching and fragmentation. In addition to relatively short‐term and local effects on the pore fluid chemical and physical properties, the intrusion was probably responsible for premature and permanent dewatering of the adjacent sediments. The sill together with its bordering zone of peperite and indurated sedimentary rocks may have constituted a significant physical barrier to any subsequent fluid transport in the enclosing sedimentary sequence.  相似文献   

15.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

16.
西藏夏瓦地区位于特提斯喜马拉雅构造带中东部,广泛发育大量近东西向的基性脉岩,这些基性脉岩对于研究该区域地质构造演化具有重要的意义。本文对夏瓦地区基性脉岩开展了系统的岩石学、年代学、地球化学等研究。夏瓦基性脉岩的岩石类型以辉绿岩和辉长玢岩为主。锆石U-Pb年代学揭示基性脉岩结晶年龄为146~145 Ma。夏瓦基性脉岩具有低SiO2(47.20%~50.54%)和高Mg~#值(39.78~53.79)特征,富集Ti、Fe、P元素,属碱性系列,富集轻稀土元素(LREE),高场强元素(Nb、Ta、Zr、Hf、Th)相对富集,显示出似OIB的地球化学特征,指示夏瓦基性脉岩来源于软流圈地幔的部分熔融,形成于大陆边缘裂谷背景下。结合区域大火成岩省基性岩的发育,认为夏瓦地区基性脉岩是大陆边缘裂谷背景下Kerguelen地幔柱作用的产物。夏瓦基性脉岩的结晶年龄虽然早于Kerguelen地幔柱活动的峰期(132 Ma),但可能属于地幔柱峰期之前的小规模岩浆活动。  相似文献   

17.
闽西南地区发育富集洋脊玄武岩(E-MORB)地球化学特征的基性岩墙,这对研究晚中生代中国东南部的构造岩浆作用具有重要指示意义.利用岩石学、锆石U-Pb年代学、元素地球化学、同位素地球化学等方法对早白垩世闽西南基性岩墙进行研究,岩墙以辉绿岩和角闪辉长辉绿岩为主,属于中-低钾岩石系列,Mg#值为55.80~66.38.锆石U-Pb年龄为117.4±3.8 Ma,为早白垩世晚期岩浆活动的产物.样品富集Rb、Ba、U、K、LREE等元素,无明显Nb、Ta、Ti亏损,显示出E-MORB的地球化学特征;(87Sr/86Sr)i=0.706 50~0.710 19、εNd(t)=-0.9~4.0,同位素Sr中等富集、Nd弱亏损.成岩过程有少量橄榄石和单斜辉石的分离结晶作用,无明显地壳混染作用.由于太平洋板块受南岭E-W向巨厚岩石圈的阻碍,导致板片下插速率与邻区产生差异,局部撕裂形成板片窗,软流圈地幔物质沿“窗口”上涌并卷裹起板片上的海洋沉积物,在上升中发生交代作用形成具有E-MORB特征的地幔岩.在早白垩世晚期的大陆拉张-陆内初始裂谷背景下,伴随软流圈上涌富集地幔岩发生部分熔融,形成的基性岩浆上侵形成了闽西南基性岩墙.   相似文献   

18.
《Precambrian Research》2001,105(2-4):269-287
The Kolvitsa Belt in the south-western Kola Peninsula formed coeval with the earliest Palaeoproterozoic rift-belts in the Fennoscandian Shield. The Palaeoproterozoic history of this belt comprises the deposition of the 2.47 Ga Kandalaksha amphibolite (metabasalt) sequence onto 2.7 Ga granitoid gneisses, the intrusion of the 2.45–2.46 Ga Kolvitsa Massif of gabbro-anorthosite and the subsequent multiple injection of mafic dykes and magmatic brecciation, followed by the intrusion of 2.44 Ga dioritic dykes, and extensive shearing at 2.43–2.42 Ga. The gabbro-anorthosite and dykes contain high-pressure garnet-bearing assemblages that have previously been considered as evidence for metamorphism in a compressional setting of the Kolvitsa Belt at 2.45–2.42 Ga, i.e. coeval with the formation of the Imandra–Varzuga rift-belt and layered mafic intrusions in an extensional setting. The Kochinny Cape study area on the White Sea coast presents an unique remnant of a 2.44 Ga mafic dyke swarm that endured ca. 1.9 Ga collision but preserved its primary structural pattern well. All these dykes were intruded along numerous NW-trending shear zones within the Kolvitsa Massif and contain angular xenoliths of sheared gabbro-anorthosite. Every new batch of mafic melt underwent shearing during or immediately after solidification, and later dykes intruded into already sheared dykes. Thus, rocks of the Kolvitsa Massif and its dyke complex were successively injected into a large-scale shear zone which was active from ca. 2.46 to 2.42 Ga. Multiple injection of mafic melts, the presence of mutually intruding, composite, sheared mafic dykes, of magmatic breccias with gabbroic groundmass, and of host rocks fragments (showing no evidence of tectonic stacking at the time of brecciation), all indicate an extensional setting. Shearing was also extensional as it occurred simultaneously with the multistage magmatism. The asymmetric morphology of deformed dykes, and asymmetric flexures within weakly deformed lenses show that all these extensional shear zones, apart from a few exceptions, are dextral, were formed in a transtensional setting and are attributed to general W–E to WSW–ENE extension. Structural data available for 2.4–2.5 Ga magmatic rocks elsewhere in the Kola region suggest that the same kinematics operated on a regional scale. The presence of the garnet-bearing assemblages in gabbro-anorthosite and dykes may be explained by crystallisation and shearing of the magmatic rocks at deep crustal levels. Alternatively, corona development might have occurred much later as a result of tectonic loading due to the juxtaposition and overthrusting of the Umba Granulite Terrane onto the Kolvitsa Belt at ca. 1.9 Ga. In view of the field evidence and published ages, an overall extensional setting rather than a combination of compressional and extensional zones is preferable for Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield at 2.5–2.4 Ga.  相似文献   

19.
The post-Variscan complex of Porto consists of metaluminous to slightly peraluminous A-type biotite granites mingled with gabbro-dioritic rocks, and late dykes with basaltic to trachyandesitic composition. U-Pb zircon dating by LA-ICP-MS on two mafic intrusive samples constrains the time of the gabbro–granite crystallisation at 281 ± 3 Ma and 283 ± 2 Ma. Hornblende 40Ar-39Ar ages from a late trachyandesite dyke date the dyking event at 280 ± 2 Ma, which is within error the U-Pb zircon ages of the intrusives. Biotite granites show variable major and trace element compositions and similar initial εNd (−0.3 to +0.9). Whole rock chemistry variations and trace element compositions of plagioclase and allanite indicate that the granites are genetically linked, essentially through fractional crystallisation of feldspars and minor allanite. On the basis of whole-rock chemistry e.g. initial εNd +4.9 to +1.7 and trace element clinopyroxene compositions, we have ascertained that the mafic intrusives and basic dykes formed from isotopically depleted mantle source-derived melts with similar trace element signature. These basic melts experienced slightly different evolutionary histories, controlled by fractional crystallisation and crustal contamination, mainly by the acid magma that gave rise to the associated biotite granites, but also by the enclosing older Variscan granitoids. U-Pb zircon data suggest that the Porto complex was affected by hydrothermal fluid circulation at 259 ± 9 Ma.  相似文献   

20.
Recent work on the Late Palaeozoic Ice Age in eastern Australia has shown the Joe Joe Group in the eastern Galilee Basin, Queensland, to be of critical importance as it is one of few records of Pennsylvanian glacial activity outside South America. This paper presents detailed sedimentological data, from which the Late Palaeozoic environment of the region is reconstructed and which, consequently, allows for robust comment on the broader Gondwanan glaciation. The Jericho Formation, in the lower Joe Joe Group, was deposited in an active extensional basin in lacustrine to fluvial environments, during the mid‐Namurian to early Stephanian. The region experienced a cool climate during this time, and polythermal mountain or valley‐type glaciers periodically advanced into the area from highlands to the north‐east. The Jericho Formation preserves a suite of proglacial to terminal glacial facies that is characterized by massive and stratified diamictites deposited from debris flows, massive and horizontally laminated conglomerates and sandstones deposited from hyperconcentrated density flows, laminated siltstones with outsized clasts and interlaminated siltstone/conglomerate deposited through ice‐rafting into lakes, and sedimentary dykes and breccias deposited through overpressurization of groundwater beneath permafrost. Non‐glacial facies are dominated by fluvial sandstones and lacustrine/overbank siltstones. The glacigenic rocks of the Jericho Formation are confined to discrete packages, recording three separate glacial advances during the latest Namurian to late Westphalian. This arrangement is consistent with the temporal distribution of glacigenic rocks from around the remainder of Australia and Gondwana, which supports the theory that glacial deposits occurred in discrete intervals. The Joe Joe Group is a key succession in the world in this context as, at this time, eastern Australia provides the only unequivocal evidence of a Namurian/Westphalian glaciation outside South America. The continuous record of sedimentation through the Pennsylvanian and Early Permian is indicative of significant warming between glacial intervals, which is difficult to reconcile with the development of long‐lived, cold‐based ice sheets across the supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号