首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The structure of the southern Pyrenees, east of the Albanyà fault (Empordà area), consists of several Alpine thrust sheets. From bottom upwards three main structural units can be distinguished : the Roc de Frausa, the Biure-Bac Grillera and the Figueres units. The former involves basement and Paleogene cover rocks. This unit is deformed by E-W trending kilometric-scale folds, its north dipping floor thrust represents the sole thrust in this area. The middle unit is formed by an incomplete Mesozoic succession overlain by Garumnian and Eocene sediments. Mesozoic rocks internal structure consists of an imbricate stack. The floor thrust dips to the south and climbs up section southwards. The upper unit exibits the most complete Mesozoic sequence. Its floor thrust is subhorizontal. The lower and middle units thrust in a piggy-back sequence. The upper unit was emplaced out of sequence.

Lower Eocene sedimentation in the Biure-Bac Grillera unit was controlled by emergent imbricate thrusts and synchronic extensional faults. One of these faults (La Salut fault) represents the boundary between a platform domain in the footwall and a subsident trough in the hangingwall. Southward thrust propagation produces the inversion of these faults and the development of cleavage-related folds in their hangingwalls (buttressing effect). This inversion is also recorded by syntectonic deposits, which have been grouped in four depositional sequences. The lower sequences represent the filling on the hangingwall trough and the upper sequences the spreading of clastics to the south once the extensional movement ends.  相似文献   

2.
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.  相似文献   

3.
The terminology of structures in thrust belts   总被引:1,自引:0,他引:1  
A review of structures and geometric relationships recognized in thrust belts is presented. A thrust is defined as any contractional fault, a corollary being that thrusts must cut up-section in their transport direction. ‘Flats’ are those portions of a thrust surface which were parallel to an arbitrary datum surface at the time of displacement and ‘ramps’ are those portions of thrusts which cut across datum surfaces. Ramps are classified on the basis of their orientation relative to the thrust transport direction and whether they are cut offs in the hangingwall or footwall of the thrust. Lateral variations in the form of staircase trajectories are joined by oblique or lateral ramps which have a component of strike-slip movement.An array of thrusts which diverge in their transport direction may form by either of two propagation models. These are termed ‘piggy-back’ propagation, which is foreland-directed, and ‘overstep’ propagation which is opposed to the thrust transport direction. An array of thrust surfaces is termed an ‘imbricate stack’ and should these surfaces anastamose upwards a ‘duplex’ will result; the fault-bounded blocks are termed ‘horses’. A duplex is bounded by a higher, ‘roof’ thrust and a lower, ‘floor’ thrust. The intersection of any two thrust planes is termed a ‘branch line’.Thrusts can be classified on the basis of their relationship to asymmetric fold limbs which they cut. A further classification arises from whether a particular thrust lies in the hangingwall or footwall of another one.The movement of thrust sheets over corrugated surfaces, or the local development of thrust structures beneath, will fold higher thrust sheets. These folds are termed ‘culminations’ and their limbs are termed ‘culmination walls’. Accommodation of this folding may require movement on surfaces within the hangingwall of the active thrust. These accommodation surfaces are termed ‘hangingwall detachments’ and they need not root down into the active thrust. This category of detachment includes dip-slip ‘hangingwall drop faults’ which are developed by differential uplift of duplex roofs, and ‘out-of-the-syncline’ thrusts which develop from overtightened fold hinges. Back thrusts, as well as forming as hangingwall detachments, may also form due to layer-parallel shortening above a sticking thrust or by rotation of the hangingwall above a ramp.  相似文献   

4.
Metasedimentary and minor metavolcanic rocks of the Early Proterozoic Pine Creek Inlier rest unconformably on Late Archaean granitic basement. Three basin-wide, regional deformation events at ca.1885–1870 Ma are recognised: I) W- to NW-verging thrusts and recumbent folds (D2), II) upright, open to tight, doubly-plunging, NNE- to NNW-trending folds (D3), and III) open, upright, E-trending folds (D4). In the centre of the Pine Creek Inlier, post-tectonic granites (1835–1820 Ma) are spatially, temporally and probably genetically associated with mesothermal gold-quartz vein deposits. The Tom's Gully deposit consists of a shallowly S-dipping quartz reef in graphitic shale and siltstone within the thermal aureole of the post-tectonic (1831 ± 6 Ma) Mt Bundey pluton. Gold mineralisation comprises two(?) SSW-plunging sulphidic ore-shoots which are intimately associated with brecciation and recrystallisation of early barren quartz. Where early quartz is absent from the thrust, gold mineralisation is not developed, indicating that this secondary brittle fracturing was essential to sulphide and gold deposition. The ore-shoots plunge parallel to the trend of D3 fold axes. The reef is hosted by a D2 thrust fault with transport to the NW. D3 folds in the hangingwall and footwall decrease in amplitude toward the reef indicating that, during continued E-W compression, the thrust acted as a décollement zone. Field relationships and microstructural studies suggest that quartz and sulphide were deposited in a reactivated thrust during wrench shear along several NNE-trending faults associated with emplacement of the Mt Bundey pluton.  相似文献   

5.
Detailed mapping and structural analysis of three large-scale culminations (Sumeini and Asjudi half-windows and Haybi-Hawasina window) in the Oman Mountains shows a considerably more complex history of deformation than a simple foreland (or downward) sequence of thrust development. Early thrusting processes tended to create a regular stacking order of imbricate slices and major thrust sheets, complying with the “rules’ of thrust propagation, assembled progressively downwards and forwards in the direction of translation. ‘Out-of-sequence’ thrusts can also be demonstrated in places by truncation of footwall structures (folds, imbricate slices, etc.), gross strain differences between thrust sheets, downward-facing structures in footwall units and elimination of thrust sheets beneath. Late stage thrusts frequently cut up-section through the previously assembled stack putting previously younger, lower thrust sheets over previously older, higher ones. Many of the culminations in the northern and central Oman Mountains were formed by ramping associated with this late-stage leap-frog rethrusting event.  相似文献   

6.
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).  相似文献   

7.
Surface geology and heophysical data, supplemented by regional structural interpretations, indicate that the Valle del Cauca basin and adjacent areas in west-central Colombia form a west-vergent, basement-involved fold and thrust belt. This belt is part of a Cenozoic orogen developed along the west side of the Romeral fault system. Structural analysis and geometrical constraints show that the Mesozoic ophiolitic basement and its Cenozoic sedimentary cover are involved in a “thick-skinned” west-vergent foreland style deformation. The rocks are transported and shortened by deeply rooted thrust faults and stacked in imbricate fashion. The faults have a NE---SW regional trend, are listric in shape, developed as splay faults which are interpreted as joining a common detachment at over 10 km depth. The faults carry Paleogene sedimentary strata and Cretaceous basement rocks westward over Miocene strata of the Valle del Cauca Basin. Fold axes trend parallel or sub parallel to the thrust faults. The folds are westwardly asymmetrical with parallel to kink geometry, and are interpreted to be fault-propagation folds stacked in an imbricate thrust system. Stratigraphic evidence suggests that the Valle del Cauca basin was deformed between Oligocene and upper Miocene time. The kinematic history outlined above is consistent with an oblique convergence between the Panama and South American plates during the Cenozoic.A negative residual Bouguer anomaly of 20–70 mgls in the central part of the Valle del Cauca basin indicates that a substantial volume of low density sedimentary rocks is concealed beneath the thrust sheets exposed at the land surface. The hydrocarbon potential of the Valle del Cauca should be reevaluated in light of the structural interpretations presented in this paper.  相似文献   

8.
Emplacement of an upper crustal, leading imbricate-fan thrust belt in the Lachlan Fold Belt of eastern Australia was accomplished along a 0.5–1 km thick zone of heterogeneously deformed, low grade phyllonite in pelitic rock. Continuous recrystallization and neocrystallization of mica in a zone of transposition layering has provided a weak zone at the base of a 100 km wide × 150 km exposed length × 10 km thick thrust system. The basal deformation zone is characterized by a low-moderately dipping, strong-intense transposition foliation enclosing elongate fault-bounded slices (up to 20 km long × 5 km wide in map view) of disrupted Cambrian metavolcanics and Upper Ordovician black shales and slates. These are derived from a structurally lower zone of duplexing or from the overturned limbs of anticlinorial structures. The detachment zone is a 10–15 km wide zone of intense deformation showing a transition from open, upright folds with weak cleavage to inclined, tightisoclinal folds with strong axial surface cleavage. The intensity of minor faults also increases into the zone. Leading imbricate fan thrust belts show maximum deformation effects along the basal detachment which forms the frontal or leading fault. The leading imbricate geometry is due to emplacement of the basal detachment zone up the lowest and last formed imbricate thrust. Movement is along a relatively ductile, low viscosity ‘layer’ at the base where strain softening occurs with development of transposition layering. This enables confined ‘flow’ along the basal zone with transport and emplacement of the fold system and duplex zone to higher structural levels. Reaction-enhanced ductility and grain boundary sliding may be important deformation mechanisms responsible for this flow. Localized polydeformation, marked by mesofolds and crenulation cleavage, reflects the interaction between thrust sheets and the movement on faults.  相似文献   

9.
The Greater Himalayan Sequence (GHS) has commonly been treated as a large coherently deforming high‐grade tectonic package, exhumed primarily by simultaneous thrust‐ and normal‐sense shearing on its bounding structures and erosion along its frontal exposure. A new paradigm, developed over the past decade, suggests that the GHS is not a single high‐grade lithotectonic unit, but consists of in‐sequence thrust sheets. In this study, we examine this concept in central Nepal by integrating temperaturetime (T–t) paths, based on coupled Zr‐in‐titanite thermometry and U–Pb geochronology for upper GHS calcsilicates, with traditional thermobarometry, textural relationships and field mapping. Peak Zr‐in‐titanite temperatures are 760–850°C at 10–13 kbar, and U–Pb ages of titanite range from c. 30 to c. 15 Ma. Sector zoning of Zr and distribution of U–Pb ages within titanite suggest that diffusion rates of Zr and Pb are slower than experimentally determined rates, and these systems remain unaffected into the lower granulite facies. Two types of T–t paths occur across the Chame Shear Zone (CSZ). Between c. 25 and 17–16 Ma, hangingwall rocks cool at rates of 1–10°C/Ma, while footwall rocks heat at rates of 1–10°C/Ma. Over the same interval, temperatures increase structurally upwards through the hangingwall, but by 17–16 Ma temperatures converge. In contrast, temperatures decrease upwards in footwall rocks at all times. While the footwall is interpreted as an intact, structurally upright section, the thermometric inversion within the hangingwall suggests thrusting of hotter rocks over colder from c. 25 to c. 17–16 Ma. Retrograde hydration that is restricted to the hangingwall, and a lithological repetition of orthogneiss are consistent with thrust‐sense shear on the CSZ. The CSZ is structurally higher than previously identified intra‐GHS thrusts in central Nepal, and thrusting duration was 3–6 Ma longer than proposed for other intra‐GHS thrusts in this region. Cooling rates for both the hangingwall and footwall of the CSZ are comparable to or faster than rates for other intra‐GHS thrust sheets in Nepal. The overlap in high‐T titanite U–Pb ages and previously published muscovite 40Ar/39Ar cooling ages imply cooling rates for the hangingwall of ≥200°C/Ma after thrusting. Causes of rapid cooling include passive exhumation driven by a combination of duplexing in the Lesser Himalayan Sequence, and juxtaposition of cooler rocks on top of the GHS by the STDS. Normal‐sense displacement does not appear to affect T–t paths for rocks immediately below the STDS prior to 17–16 Ma.  相似文献   

10.
A low-angle thrust fault places high-PT granulites (hangingwall) of the Internal Zone of the Neoproterozoic Brasília Belt (Tocantins Province, central Brazil) in contact with a lower-grade footwall (External Zone) comprised of nappes of distal passive margin- and back-arc basin-related supracrustals. The footwall units were emplaced at  750 Ma onto proximal sedimentary rocks (Paranoá Group) of the São Francisco paleo-continent passive margin. The high-PT belt is comprised of 645–630 Ma granulite-facies paragneiss and orthogneiss, and mafic–ultramafic complexes that include three major layered intrusions and metavolcanic rocks granulitized at  750 Ma. These complexes occur within lower-grade metasedimentary rocks in the hangingwall of the Maranhão River Thrust, which forms the Internal Zone–External Zone boundary fault to the north of the Pirineus Zone of High Strain. Detailed lithostructural studies carried out in Maranhão River Thrust hangingwall and footwall metasedimentary rocks between the Niquelândia and Barro Alto complexes, and also to the east of these, indicate the same lithotypes and Sm–Nd isotopic signatures, and the same D1D2 progressive deformation and greenschist-facies metamorphism. Additionally, footwall metasedimentary rocks exclusively display a post-D2 deformation indicating that the Maranhão River Thrust propagated through upper crustal rocks of the Paranoá Group relatively late during the tectonic evolution of the belt. Fault propagation was a consequence of intraplate underthrusting during granulite exhumation. The results allow for a better tectonic understanding of the Brasília Belt and the Tocantins Province, as well as explaining the presence of the Pirineus Zone of High Strain.  相似文献   

11.
ABSTRACT In the Hlinsko region (Variscan Bohemian Massif, Czech Republic) a major extensional shear zone separates low-grade metasedimentary series (Hlinsko schists) and high-grade rocks of the Moldanubian terrane (Svratka Crystalline Unit). During late-Variscan extension, a tonalite intruded syntectonically into the normal ductile shear zone, and caused contact metamorphism of the overlying schists. Concurrent syntectonic sedimentation of a flysch series took place at the top of the hangingwall schists. In order to decipher the detailed petrological evolution of the Hlinsko unit situated in the hangingwall of this tectonic contact, a phase diagram approach and petrogenetic grids, calculated with the thermocalc computer program, were used. The crystallization/deformation relationships and the paragenetic analysis of the Hlinsko schists define a P–T path with an initial minor increase in pressure followed by cooling. Calculated pseudosections constrain this anticlockwise P-T evolution to the upper part of the andalusite field between 0.36 and 0.40 GPa for temperatures ranging from 570 to 530°C. A low aH2O is required to explain the presence of andalusite-biotite-bearing assemblages, and could be related to the presence of abundant graphite. In contrast, the footwall rocks of the Svratka Crystalline Unit record decompression from around 0.8 GPa at a relatively constant temperature, followed by cooling. Thus, the footwall and the hangingwall units display opposite, but convergent P–T histories. Decompression in the footwall rocks is related to a rapid exhumation. We propose that the inverse, anticlockwise P–T path recorded in the hangingwall pelites is related to the rapid, extension-controlled sedimentation of the overlying flysch series.  相似文献   

12.
河北兴隆复式叠瓦扇构造   总被引:4,自引:0,他引:4       下载免费PDF全文
姜波  刘洪章 《地质科学》1997,32(2):165-172
河北省北部兴隍-平泉复向斜的西端发育了一种特殊类型的推覆构造,该推覆构造具有三重结构的特点,即由上叠瓦扇、下叠瓦扇和下伏系统组成。上叠瓦扇可以分为被分支断裂分割的太古字、长城系、蓟县系、青白口系和寒武-奥陶系5个逆冲岩席;各分支断裂上陡下缓,向下逐渐归并于F1主逆冲断裂上。F1断层下的石炭-二叠系也发育了一组叠瓦状逆冲断层,形成了与上叠瓦扇具有不同变形特征的下叠瓦扇。由于这一构造特殊的两套叠瓦扇结构,故笔者称其为复式叠瓦扇构造,这是一种新的推覆构造类型。  相似文献   

13.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

14.
《Journal of Structural Geology》2001,23(6-7):1167-1178
S–C fabrics similar to those found in mylonites are observed in foliated cataclastic granitic rocks from the Nojima fault zone, southwest Japan. The foliated cataclastic rocks comprise cataclasite, fault breccia, gouge, and crushing-originated pseudotachylyte. The S–C fabrics observed in these cataclastic rocks involve S-surfaces defined by shape preferred orientation of biotite fragments or aggregates of quartz and feldspar fragments, and C-and C′-surfaces defined by microshears and shear bands, respectively, where fine-grained material is concentrated. Striations on the main fault plane are oriented parallel to the cataclasite lineations. A significant microstructural difference between the foliated cataclastic rocks and S–C mylonites is the absence of dynamically recrystallized grains in the foliated cataclasites. The striations, cataclastic lineations, and the S–C fabrics in the cataclastic rocks formed from the late Tertiary to the late Holocene indicate that the Nojima fault zone has moved as a dextral strike-slip fault, with a minor reverse component since it formed. S–C fabrics in cataclastic rocks provide important information on the tectonic history and are reliable kinematic indicators of the shear sense in brittle shear zones or faults.  相似文献   

15.
位于江西省龙南县上围地区出露的燕山期花岗质复式岩体明显受北东向马屎山硅化断裂带和鹅形石英断裂夹持控制,是有利的产铀岩体,已探明291铀矿床和292矿点。岩体内断裂作用强烈,热液蚀变和铀矿化现象普遍。经地质调查,在岩体内识别出北东向断裂6条和北北东向断裂11条及若干北西—北西西向断裂。其中,北东向断裂主要包括岩体西部的硅化带和东部的石英断裂;北北东向断裂主要包括岩体东部的蚀变碎裂岩带和西部硅化破碎带;北西—北西西向断裂多被中基性岩脉充填,主要包括501~504号脉。北北东向断裂与铀成矿关系最密切,是容矿断裂。断裂的规模和产状控制了铀矿体的空间分布和展布形态,断裂性质控制了铀矿化类型,断裂变形程度控制铀矿化蚀变分带,断裂与中基性岩脉复合控制了富铀矿体的产出形态。  相似文献   

16.
Low‐angle detachment faults are common features in areas of large‐scale continental extension and are typically associated with metamorphic core complexes, where they separate upper plate brittle extension from lower plate ductile stretching and metamorphism. In many core complexes, the footwall rocks have been exhumed from middle to lower crustal depths, leading to considerable debate about the relationship between hangingwall and footwall rocks, and the role that detachment faults play in footwall exhumation. Here, garnet–biotite thermometry and garnet–muscovite–biotite–plagioclase barometry results are presented, together with garnet and zircon geochronology data, from seven locations within metapelitic rocks in the footwall of the northern Snake Range décollement (NSRD). These locations lie both parallel and normal to the direction of footwall transport to constrain the pre‐exhumation geometry of the footwall. To determine P–T gradients precisely within the footwall, the ΔPT method of Worley & Powell (2000) has been employed, which minimizes the contribution of systematic uncertainties to thermobarometric calculations. The results show that footwall rocks reached pressures of 6–8 kbar and temperatures of 500–650 °C, equivalent to burial depths of 23–30 km. Burial depth remains constant in the WNW–ESE direction of footwall transport, but increases from south to north. The lack of a burial gradient in the direction of footwall transport implies that the footwall rocks, which today define a sub‐horizontal datum in the direction of fault transport, also defined a sub‐horizontal datum at depth in Late Cretaceous time. This suggests that the footwall was not tilted about the normal to the fault transport direction during exhumation, and hence that the NSRD did not form as a low‐angle normal fault cutting down through the lower crust. Instead, the following evolution for the northern Snake Range footwall is proposed. (i) Mesozoic contraction caused substantial crustal thickening by duplication and folding of the miogeoclinal sequence, accompanied by upper greenschist to amphibolite facies metamorphism. (ii) About half of the total exhumation was accomplished by roughly coaxial stretching and thinning in Late Cretaceous to Early Tertiary time, accompanied by retrogression and mylonitic deformation. (iii) The footwall rocks were then ‘captured’ from the middle crust along a moderately dipping NSRD that soled into the middle crust with a rolling‐hinge geometry at both upper and lower terminations.  相似文献   

17.
Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature (T i ) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). T i increases as movement progresses with time. Thermal conductivity (K i ) and thermal diffusivity (\(k_{\mathrm {i}}^{\prime }\)) of faulted blocks govern T i but they do not bear simple relation. T i is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.  相似文献   

18.
Fault-slip data are used to reconstruct varying tectonic regimes associated with transverse fold development along the eastern and southern margins of the Jaca basin, southern Pyrenees, Spain. The Spanish Pyrenean foreland consists of thrust sheets and leading-edge décollement folds which developed within piggyback basins. Guara Formation limestones on the margins of the Jaca basin were deposited synchronously with deformation and are exposed in the External Sierra. Within the transverse folds, principal shortening axes determined from P and T dihedra plots of fault-slip data show a shift from steep shortening in stratigraphically older beds to NNE–SSW horizontal shortening in younger beds. Older strata are characterized by extensional faults interpreted to result from halotectonic (salt tectonics) deformation, whereas younger strata are characterized by contraction and strike-slip faults interpreted to result from thrust sheet emplacement. The interpretation of the timing for the shortening axes in the younger strata is supported by the observation that these axes are parallel to shortening axes determined from finite strain analysis, calcite twins, and regional thrusting directions determined from fault-related folds and slickenlines. This study shows that fault population analysis in syntectonic strata provides an opportunity to constrain kinematic evolution during orogeny.  相似文献   

19.
三江北段东莫扎抓矿区构造变形特征   总被引:3,自引:0,他引:3  
已有关于青藏高原隆升的各种构造模型多重视新生代变形而忽略了早期构造变形的限制.本文以三江北段东莫扎抓矿区为研究对象,通过详细的构造-岩相填图,恢复了矿区二叠纪以来变形序列,结合区域资料讨论了变形事件的大地构造背景.研究表明矿区发育中-下二叠统九十道班组灰岩、上二叠统那益雄组碎屑岩、上三叠统结扎群甲丕拉组碎屑岩和上三叠统结扎群波里拉组灰岩4套地层系统,二叠系与三叠系之间为不整合接触,局部被近南北向逆断层代替.北西向逆断层横亘矿区,断层上盘三叠纪碎屑岩和灰岩整体北倾,断层下盘三叠纪岩石被左右两条走滑断层夹持向南挤出.在图面和露头尺度上矿区叠加褶皱明显,南北向剖面上多见紧闭的倾伏褶皱,近东西向剖面上则为开阔水平的斜歪褶皱,表明南北向剖面上观察到的是已被叠加的早期褶皱,为矿区第一期变形,其形成与三叠纪末古特提斯洋盆闭合有关.始新世晚期印-亚大陆碰撞地壳缩短形成矿区第二期构造,即北西向逆断层和褶皱叠加.第三期近南北向逆断层可能形成于始新世末,与印-亚大陆碰撞引起的侧向旋转有关.  相似文献   

20.
Interpretation and 2‐D forward modelling of aeromagnetic datasets from the Olary Domain to the north of the outcropping Kalabity Inlier, South Australia, is consistent with a buried structural architecture characterised by isolated anticlines (also referred to as growth anticlines) bounded by steeply dipping reverse faults. The isolated anticlines are interpreted to have formed by half‐graben inversion during crustal shortening associated with the ca 1600–1580 Ma Olarian Orogeny. We interpret the bounding reverse faults as reactivated high‐angle normal faults, originating from a listric extensional fault architecture. As shortening increased, ‘break‐back bypass’ and ‘short‐cut‘ thrusts developed because of buttressing of the hangingwall successions against the footwall. The resulting architecture resembles a combination of a thrust‐related imbricate fan and an accumulation of inverted basins. Using this structural architecture, synrift sediments proximal to interpreted normal faults were identified as prospective for sediment‐hosted massive sulfide Pb–Zn–Ag mineralisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号