首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 356 毫秒
1.
The vertical observation of volatile organic compounds(VOCs) is an important means to clarify the mechanisms of ozone formation. To explore the vertical evolution of VOCs in summer, a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019. A total of 192 samples were collected, 23 vertical profiles were obtained, and the concentrations of 87 VOCs were measured. The range of the total VOC concentration was 41–48 ppbv below 600 m. It then slightly increased above 600 m, and rose to 58 ± 52 ppbv at 1000 m.The proportion of alkanes increased with height, while the proportions of alkenes, halohydrocarbons and acetylene decreased. The proportion of aromatics remained almost unchanged. A comparison with the results of a winter field campaign during 8–16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer. Alkanes accounted for the same proportion in winter and summer. Alkenes,aromatics, and acetylene accounted for higher proportions in winter, while halohydrocarbons accounted for a higher proportion in summer. There were five VOC sources in the vertical direction. The proportions of gasoline vehicular emissions + industrial sources and coal burning were higher in winter. The proportions of biogenic sources + long-range transport, solvent usage, and diesel vehicular emissions were higher in summer. From the surface to 1000 m, the proportion of gasoline vehicular emissions + industrial sources gradually increased.  相似文献   

2.
Time-series of weekly total carbon(TC)concentrations of fine aerosol particles(PM2.5)in Beijing and Toronto were compared to investigate their respective levels and temporal patterns over two years from August 2001 through July 2003.In addition to this comparison,differences in the factors contributing to the observed concentrations and their temporal variations are discussed.Based upon past knowledge about the two megacities with highly contrasting air pollutant levels,it is not surprising that the average TC concentration in Beijing(31.5μg C m-3)was greater than that in Toronto by a factor of 8.3.Despite their large concentration differences,in both cities TC comprised a similarly large component of PM2.5.TC concentrations exhibited very different seasonal patterns between the two cities.In Beijing,TC experienced higher levels and greater weekly fluctuations in winter whereas in Toronto this behavior was seen in summer. As a result,the greatest gap in TC concentrations between Beijing and Toronto(by a factor of 12.7) occurred in winter,while the smallest gap(a factor of 4.6)was in summer.In Beijing,seasonal variations in the emissions probably played a greater role than meteorology in influencing the TC seasonality,while in Toronto during the warm months more than 80%of the hourly winds were recorded from the south,along with many potential anthropogenic sources for the days with high TC concentrations.This comparison of the differences provides insight into the major factors affecting carbonaceous aerosol in each city.  相似文献   

3.
The North China Plain (NCP) has recently faced serious air quality problems as a result of enhanced gas pollutant emissions due to the process of urbanization and rapid economic growth. To explore regional air pollu- tion in the NCP, measurements of surface ozone (O3), nitrogen oxides (NOx), and sulfur dioxide (SO2) were car- ried out from May to November 2013 at a rural site (Xianghe) between the twin megacities of Beijing and Tianjin. The highest hourly ozone average was close to 240 ppbv in May, followed by around 160 ppbv in June and July. High ozone episodes were more notable than in 2005 and were mainly associated with air parcels from the city cluster in the hinterland of the polluted NCP to the southwest of the site. For NOx, an important ozone precur- sor, the concentrations ranged from several ppbv to nearly 180 ppbv in the summer and over 400 ppbv in the fall. The occurrence of high NOx concentrations under calm condi- tions indicated that local emissions were dominant in Xianghe. The double-peak diurnal pattern found in NOx concentrations and NO/NOx ratios was probably shaped by local emissions, photochemical removal, and dilution re- sulting from diurnal variations of surface wind speed and the boundary layer height. A pronounced SO2 daytime peak was noted and attributed to downward mixing from an SO2-rich layer above, while the SO2-polluted air mass transported from possible emission sources, which differed between the non-heating (September and October) and heating (November) periods, was thought to be responsible for night-time high concentrations.  相似文献   

4.
Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0μg m-3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μg m-3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and Z39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m-3 for winter and 4.2μg m-3 for summer.  相似文献   

5.
In order to understand the seasonal variation of aerosol optical properties in the Yangtze River Delta,5 years of measurements were conducted during September 2005 to December 2009 at Taihu,China.The monthly averages of aerosol optical depth were commonly >0.6;the maximum seasonal average(0.93) occurred in summer.The magnitude of the Angstr¨om exponent was found to be high throughout the year;the highest values occurred in autumn(1.33) and were the lowest in spring(1.08).The fine modes of volume size distribution showed the maxima(peaks) at a radius of ~0.15 μm in spring,autumn,and winter;at a radius of ~0.22 μm in summer.The coarse modes showed the maxima(peaks) at a radius of 2.9 μm in spring,summer,and autumn and at a radius of 3.8 μm in winter.The averages of single-scattering albedo were 0.92(spring),0.92(summer),0.91(autumn),and 0.88(winter).The averages of asymmetry factor were found to be larger in summer than during other seasons;they were taken as 0.66 at 440-1020 nm over Taihu.The real part of the refractive index showed a weak seasonal variation,with averages of 1.48(spring),1.43(summer),1.45(autumn),and 1.48(winter).The imaginary parts of the refractive index were higher in winter(0.013) than in spring(0.0076),summer(0.0092),and autumn(0.0091),indicating that the atmosphere in the winter had higher absorbtivity.  相似文献   

6.
By means of a three-dimensional meteorological model(MM5)and a chemical model,thedistributions of tropospheric ozone and its precursors over China have been simulated in summerand winter time,16—18 August 1994 and 7—9 January 1995.The distribution of ozone over theTibetan Plateau in summer time is deeply discussed.The simulated results indicate that thedistributions of surface ozone and NO_x are in good agreement with observed results,and humanactivities and photochemical reactions are the main factors controlling the surface ozone and NO_xconcentrations.In addition,higher ozone concentrations are coincided with the air convergence,and the lower concentrations are related to the air divergence.In summer,over the TibetanPlateau the strong flow convergence results in higher ozone concentrations in the lowertroposphere:and the strong flow divergence results in lower ozone concentrations in the uppertroposphere.In winter time ozone concentrations show Iarge-scale characteristics controlled bywesterly flow,and in the jet area they are lower than those outside the jet.  相似文献   

7.
The diurnal temperature range(DTR) has decreased dramatically in recent decades, but it is not yet obvious whether the extreme values of DTR have also reduced. Based on the daily maximum and minimum temperature data of 653 stations in China, a set of monthly indices of warm extremes, cold extremes, and DTR extremes in summer(June, July, August) and winter(December, January, February) were studied for spatial and temporal features during the period 1971–2013. Results show that the incidence of warm extremes has been increasing in most parts of China, while the opposite trend was found in the cold extremes for summer and winter months. Both increasing and decreasing trends of monthly DTR extremes were identified in China for both seasons. For high DTR extremes, decreasing trends were identified in northern China for both seasons, but increasing trends were found only in southern China in summer, while in winter, they were found in central China. Monthly low DTR extreme indices demonstrated consistent positive trends in summer and winter, while significant increases(P 0.05) were identified for only a few stations.  相似文献   

8.
Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.  相似文献   

9.
In order to study the variation characteristics of concentration of the atmospheric non-methane hydrocarbons (NMHCs) in background area of China, the atmospheric concentrations of NMHCs were measured at Lin'an (LA) regional GAW (Global Atmosphere Watch) Station (30°25'N, 119°44'E; 132.0 m ASL) and Shangdianzi (SDZ) regional GAW Station (40°19'N, 117°07'E; 286.5 m ASL) with the sorbent sorp-tion/thermal desorption/gas chromatographic method. Totally 145 samples were collected during the period of October 2003 and July 2004. Among the 52 NMHC species of C2-C10 detected there were 26 alkanes, 17 alkenes, and 9 aromatics. The average concentrations of total NMHCs (TNMHCs) at LA and SDZ were (238.5±126.0)×KT9C and (278.7±185.5)x10-9C, respectively. The results showed the ambient concentrations of TNMHCs at LA regional GAW Station increased notably over the last decade. The compositions of NMHCs at SDZ and LA were relatively similar. The proportions of alkanes, alkenes, and aromatics for SDZ and LA were hi ranges of (27.3±4.0)%, (10.3±3.5)%, and (62.5±4.8)%, respectively, with features of vehicle exhaust emissions. The concentrations of NMHCs at the two sites showed obvious diurnal and seasonal variations. The TNMHC concentrations in October-November were high at the two sites, and relatively low in April and July. The diurnal variation patterns at the sites were different. The high TNMHC concentrations at SDZ normally appeared in evening and night, but appeared in morning at LA. The TNMHCs concentrations at the two sites were significantly influenced by the meteorological condition. The high TNMHC concentration associated with the local wind from the urban areas or traffic in upper reaches.  相似文献   

10.
The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.  相似文献   

11.
As the key precursors of O_3, anthropogenic non-methane volatile organic compounds(NMVOCs) have been studied intensively. This paper performed a meta-analysis on the spatial and temporal variations of NMVOCs, their roles in photochemical reactions, and their sources in China, based on published research. The results showed that both nonmethane hydrocarbons(NMHCs) and oxygenated VOCs(OVOCs) in China have higher mixing ratios in the eastern developed cities compared to those in the central and western areas. Alkanes are the most abundant NMHCs species in all reported sites while formaldehyde is the most abundant among the OVOCs. OVOCs have the highest mixing ratios in summer and the lowest in winter, which is opposite to NMHCs. Among all NMVOCs, the top eight species account for 50%-70% of the total ozone formation potential(OFP) with different compositions and contributions in different areas. In devolved regions, OFP-NMHCs are the highest in winter while OFP-OVOCs are the highest in summer. Based on positive matrix factorization(PMF) analysis, vehicle exhaust, industrial emissions, and solvent usage in China are the main sources for NMHCs. However, the emission trend analysis showed that solvent usage and industrial emissions will exceed vehicle exhaust and become the two major sources of NMVOCs in near future. Based on the meta-analysis conducted in this work,we believe that the spatio-temporal variations and oxidation mechanisms of atmospheric OVOCs, as well as generating a higher spatial resolution of emission inventories of NMVOCs represent an area for future studies on NMVOCs in China.  相似文献   

12.
Qualification of the sources of volatile organic compounds (VOCs) and their effects on city air pollution are crucial issues to develop an effective air pollution control strategy in many polluted large cities of China. In this study, the VOC concentrations measured in Shanghai, China from 2006 to 2008 are analyzed. A receptor model (PCA/APCS; Principal Component Analysis/Absolute Principal Component Scores) is applied for identifying the contributions of individual VOC sources to VOC concentrations. Using the PCA/APCS technique, five and four surrogated VOC sources are classified in the center of Shanghai city in summer and in winter. In summer, the five VOC sources include PCs1 (liquefied petroleum gas/natural gas leakage and gasoline evaporation), PCs2 (vehicle related emissions), PCs3 (solvent usages), PCs4 (industrial productions), and PCs5 (biomass/biofuel/coal burning and other natural sources). In winter, the four VOC sources include PCw1 (liquefied petroleum gas/natural gas leakage and gasoline evaporation), PCw2 (solvent usages and industrial productions), PCw3 (vehicle related emissions), and PCw4 (biomass/biofuel/coal burning). The result suggests that during summer, 24, 28, 17, 18, and 13% of the measured VOC concentrations were estimated due to the PCs1, PCs2, PCs3, PCs4, and PCs5 VOC sources, respectively. During winter, 17, 48, 23, and 12% of the measured VOC concentrations were attributed to the PCw1, PCw2, PCw3, and PCw4 VOC sources, respectively. For aromatic concentrations, 35% of the concentrations were resulted from solvent usage (PCs3), following by industrial productions (PCs4) of 27%, and vehicle emissions (PCs2) of 19%. For alkene concentrations, the two largest contributors were due to gasoline industrial and vehicle emissions in both summer and winter. For alkane concentrations, the largest sources were due to gasoline industrial emissions (PCs1) and vehicle emissions (PCs2) in summer. In winter, vehicle emissions (PCw3), solvent usages/industrial productions (PCw2), and gasoline industrial emissions (PCw1) were the major sources. For halo-hydrocarbon concentrations, biomass/biofuel/coal burning and other natural sources were the major sources in both summer and winter.  相似文献   

13.
The concentration of gas-phase peroxides has been measured almost continuously at the Cape Grim baseline station (41° S) over a period of 393 days (7702 h of on-line measurements) between February 1991 and March 1992. In unpolluted marine air a distinct seasonal cycle in concentration was evident, from a monthly mean value of>1.4 ppbv in summer (December) to <0.2 ppbv in winter (July). In the summer months a distinct diurnal cycle in peroxides was also observed in clean marine air, with a daytime build-up in concentration and decay overnight. Both the seasonal and diurnal cycles of peroxides concentration were anticorrelated with ozone concentration, and were largely explicable using a simple photochemical box model of the marine boundary layer in which the central processes were daytime photolytic destruction of ozone, transfer of reactive oxygen into the peroxides under the low-NOx ambient conditions that favour self-reaction between peroxy radicals, and continuous heterogeneous removal of peroxides at the ocean surface. Additional factors affecting peroxides concentrations at intermediate timescales (days to a week) were a dependence on air mass origin, with air masses arriving at Cape Grim from higher latitudes having lower peroxides concentrations, a dependence on local wind speed, with higher peroxides concentrations at lower wind speeds, and a systematic decrease in peroxides concentration during periods of rainfall. Possible physical mechanisms for these synoptic scale dependencies are discussed.  相似文献   

14.
Photochemical smog characterized by high concentrations of ozone (O3) is a serious air pollution issue in the North China Plain (NCP) region, especially in summer and autumn. For this study, measurements of O3, nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), nitrous acid (HONO), and a number of key physical parameters were taken at a suburban site, Xianghe, in the NCP region during the summer of 2018 in order to better understand the photochemical processes leading to O3 formation and find an optimal way to control O3 pollution. Here, the radical chemistry and O3 photochemical budget based on measurement data from 1-23 July using a chemical box model is investigated. The daytime (0600-1800 LST) average production rate of the primary radicals referred to as ROx (OH + HO2+ RO2) is 3.9 ppbv h-1. HONO photolysis is the largest primary ROx source (41%). Reaction of NO2 + OH is the largest contributor to radical termination (41%), followed by reactions of RO2 + NO2 (26%). The average diurnal maximum O3 production and loss rates are 32.9 ppbv h-1 and 4.3 ppbv h-1, respectively. Sensitivity tests without the HONO constraint lead to decreases in daytime average primary ROx production by 55% and O3 photochemical production by 42%, highlighting the importance of accurate HONO measurements when quantifying the ROx budget and O3 photochemical production. Considering heterogeneous reactions of trace gases and radicals on aerosols, aerosol uptake of HO2 contributes 11% to ROx sink, and the daytime average O3 photochemical production decreases by 14%. The O3-NOx-VOCs sensitivity shows that the O3 production at Xianghe during the investigation period is mainly controlled by VOCs.  相似文献   

15.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

16.
Tianjin is the third largest megacity and the fastest growth area in China, and consequently faces the problems of surface ozone and haze episodes. This study measures and characterizes volatile organic compounds(VOCs), which are ozone precursors, to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the Ha Chi(Haze in China) summer campaign in 2009. A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv, respectively. Of those, 51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization. The identified sources of VOCs were significantly related to vehicular activities, which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin. Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas, although the contribution of industry in the suburban area(36%) was much higher than that at the urban area(16%). We conclude that controlling vehicle emissions should be a top priority for VOC reduction, and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life, especially in suburban areas.  相似文献   

17.
近年来近地面臭氧问题日益凸显,成为影响空气质量持续改善的瓶颈.本研究基于2017年8—9月在湖州市城区开展的为期1个月的臭氧及其前体物挥发性有机物(VOCs)和氮氧化物(NOx)在线观测数据,分析了臭氧及其前体物污染特征,利用正矩阵因子分析(PMF)解析了VOCs来源,并采用基于观测的模型(OBM)对臭氧生成机制进行研究.研究结果表明:1)观测期间湖州市VOCs平均体积分数为(24.78±9.10)×10-9,其中占比最高的组成为烷烃、含氧VOCs (OVOCs)和卤代烃;2)在臭氧非超标时段,湖州市臭氧生成处于VOCs控制区,而在臭氧重污染期间湖州市处于以VOCs控制为主的过渡区;3)在臭氧超标时段,对臭氧生成潜势(OFP)贡献最大的是芳香烃(39.6%),其次是烯烃(21.5%)和OVOCs (19.4%),排名前三的关键组分为甲苯、乙烯和间/对二甲苯;4)源解析结果显示观测期间湖州市VOCs的主要来源是溶剂使用(27.0%)、交通排放(22.7%)、背景+传输(19.3%)、工业排放(16.9%)、汽油挥发(7.7%)和植物排放(6.4%),重污染过程期间对OFP贡献最大的两类源是交通排放源和溶剂使用源,贡献百分比分别为35.1%和30.5%.因此,对交通排放和溶剂使用方面进行控制管理对湖州市大气臭氧污染防控有重要意义.  相似文献   

18.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

19.
Air samples were collected covering a full diurnal cycle during each month of the year 2002 at a mountaintop of Mt. Abu (24.6^∘ N, 72.7^∘ E, 1680 amsl). These samples were analyzed for C2−C4 NMHCs using a gas chromatograph (GC) equipped with flame ionization detector (FID). The seasonally averaged diurnal distributions of these NMHCs do not show significant variations in the summer season. While sharp peaks in the diurnal variation of some species during evening hours are additional features apart from higher levels in all NMHCs in the winter season. The seasonal variations in relatively long lived species (e.g. ethane, propane and acetylene) are observed to be more pronounced compared to those in reactive species (e.g. ethene, propene and butanes). The seasonal changes in transport patterns seem to be more dominant factor at this site for the observed variations in NMHCs than changes in OH radical concentration. The annual mean mixing ratios of ethane, ethene, propane, propene, i-butane, acetylene, and n-butane are 1.22 ± 0.58, 0.34 ± 0.24, 0.46 ± 0.20, 0.17 ± 0.14, 0.21 ± 0.18, 0.41 ± 0.43, and 0.31 ± 0.35 ppbv, respectively. Only few pairs of NMHCs are observed to show good correlations, mainly due to transport of air masses with different degree of photochemical processing. A comparison of this measurement with data reported for other remote sites of the globe indicates lower levels of light NMHCs in the tropical sites. The annual mean mixing ratios of various C2−C4 NMHCs at Mt. Abu are lower by factors ranging between 3 to 9 compared to a nearest urban site of Ahmedabad. The annual mean propylene (propene) equivalent concentrations of about 1.12 and 8.62 ppbC were calculated for Mt. Abu and Ahmedabad, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号