首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This study is a follow up of the investigation of some magnetic properties and metastability of greigite in samples obtained from Miocene claystones in the Kruné hory (Erzgebirge) Piedmont basins (Bohemia). Three different methods of upgrading the smythite were applied; the magnetic properties of the concentrates are compared. The thermal conversion of smythite sets in at 200°C while greigite converts at 250°C. The first intermediate products to be formed are iron sulphides, marcasite clearly dominating over pyrite and pyrrhotite. Apart from a Fe3+ sulphate with a composition of Fe2(SO4)3, oxidation of these sulphides gives rise to -Fe2O3. The result of the subsequent decomposition of the mentioned sulphate is the formation of -Fe2O3, which retains the sulphate structure. The final product of the thermal decomposition at 800°C is -Fe2O3. In the smythite concentrate the conversion to Fe3+ sulphate and -Fe2O3 is about twice as intensive as in greigite. No direct conversion to -Fe2O3 was found. During the thermal process self-reversals of remanence were observed, in various samples as many as four reversals in the temperature interval from 340 to 590°C. The occurrences of self-reversals of remanence were only observed at high degrees of thermal demagnetization, of the order of 10–2 down to 10–3 in the temperature interval of sulphide origin (below 400°C), and of the order of 10–4 down to 10–6 in the temperature interval of Fe-oxides origin (above 400°C).Presented at the 3rd Conference on New Trends in Geomagnetism, Castle of Smolenice, Czechoslovakia, June 22–29, 1992  相似文献   

2.
Notes on the variation of magnetization within basalt lava flows and dikes   总被引:2,自引:0,他引:2  
Summary The magnetic properties of basaltic rocks are dominated by the contained primary Fe–Ti oxides. At solidus temperature (1000°C) the composition of these primary oxides is restricted to titanomagnetite (Fe3-xTixO4) and hemoilmenites (Fe2-yTiyO3). The examination of 269 chemical analyses of the primary Fe–Ti oxides in basalts (in sensu lato) gives an average ofx=0.61 (T c=168°C) for the titanomagnetites andy=0.89 (T c=–121°C) for the hemoilmenites. If distinction is made between tholeiites, alkali basalts and andesites, a clear difference for thex-values is observed: the average for tholeiitesx=0.64 (T c=144°C), for alkali basaltsx=0.52 (T c=253°C), for andesitesx=0.38 (T c=341°C).Environment of crystallization and cooling rate are major interrelated factors influencing subsequent changes in the mineralogy of the primary Fe–Ti oxides and resulting magnetic properties. This has been tested by studying the variation of magnetization and some of its parameters in three different basalt rock units: a dike, 180 cm, and two lava flows, 3 m and 33 m thick, respectively. Grain size and oxidation state of the titanomagnetites control the variation of magnetization in these basalt units.  相似文献   

3.
A suite of synthetic titanomagnetites of composition Fe2.4?δAlδTi0.6O4 and Fe2.6?δAlδTi0.4O4 (δ = 0, 0.1 and 0.2 in both cases) have been prepared by a method of partial self-buffering and pulverized in a ball mill to particle size of about 200–500 Å. Magnetic hysteresis parameters-saturation and remanent magnetizations and coercive force were measured between room temperature and the Curie temperatures and other parameters-X-ray cell edge, initial susceptibility and coercive force of remanence were determined at room temperature. The intrinsic magnetic “hardness” increases with increasing content of Al3+ and Ti4+, both probably corresponding to an increase in the concentration of Fe2+ ions on the tetrahedral sites of the spinel structure. The room-temperature hysteresis properties were compared with those resulting from monodomain models for the work done to magnetically saturate an assemblage of grains and the approach to saturation, and the separate contributions from coexisting anisotropies of cubic and uniaxial symmetries (assumed present) inferred. The cubic anisotropy energy constants so derived are larger than those determined from multidomain single crystals. The derived cubic constants are also larger than the derived uniaxial anisotropy constants. The latter, however, dominate the behaviour (e.g., coercive force) because of the lower symmetry. The materials appear to be entirely in the stable monodomain state at room temperature.  相似文献   

4.
A suite of synthetic titanomagnetites were prepared with compositions Fe2.6?δTi0.4AlδO4 and Fe2.4?δTi0.6AlδO4 (δ = 0, 0.1, 0.2 in both cases). Ball-milling of the synthesized samples produced material in the magnetic monodomain state as indicated by hysteresis loops and the Lowrie-Fuller test. The coercive force of the specimens depends on the Al concentration and lies in the range 1–2 kOe. The TRM induced in the samples is correspondingly “hard”. The low-field (0–1 Oe) TRM acquisition curve is linear. The higher field TRM-H curve is not in agreement with either monodomain or two-domain theoretical models.  相似文献   

5.
The natural remanent magnetization of andesitic pumice emitted during the 1985 eruption of the Nevado del Ruiz volcano (Colombia) has a direction opposite to the present geomagnetic field. The self-reversing mechanism can be re-activated in the laboratory during cycles of heating and subsequent cooling in air and zero magnetic field. Laboratory-produced thermoremanent magnetization is dominated by the same self-reversal process in fields up to several mT. Microchemical, optical and Curie temperature analyses indicate that the ferromagnetic minerals are members of the magnetite-ulvöspinel and hematite-ilmenite series with average compositions of Fe2.73Ti0.27O4 and Fe1.38Ti0.62O3, respectively. In analogy with the magnetic behaviour of synthetically grown antiferromagnetic-ferromagnetic FeMn-FeNi films, the self-reversal can probably be interpreted in terms of an exchange field acting between a Ti-poor canted antiferromagnetic and a Ti-rich ferrimagnetic phase in the hemoilmenite grains.  相似文献   

6.
In this study, 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene ( 3 ) has been prepared by the treatment of calix[4]arene with a secondary amine (4‐benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base ( 3 ) has been grafted onto [3‐(2,3‐epoxypropoxy)‐propyl]‐trimethoxysilane‐modified Fe3O4 magnetite nanoparticles (EPPTMS‐MN) in order to obtain 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy calix[4]arene‐grafted EPPTMS‐MN (BP‐calix[4]arene‐grafted Fe3O4). All new compounds were characterized by a combination of FTIR and 1H‐NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene in liquid–liquid extraction and BP‐calix[4]arene‐grafted Fe3O4 ( 4 ) in solid–liquid extraction experiments. The extraction results indicated that 3 is protonated at proton‐switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3 , the retention of dichromate anions in the presence of Cl, NO, and SO anions at pH 1.5 was also examined.  相似文献   

7.
Magnetic hydroxyapatite (HAP), which combined superparamagnetic Fe3O4 nanoparticles and HAP, composite materials were prepared by ultrasound method in this paper. It has also been found that these materials have the ability to adsorb phenol in wastewater. The magnetic materials were investigated by scanning electron microscope, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, thermal gravimetric analysis, vibrating sample magnetometer, and N2 adsorption in order to elucidate the morphology, structure, and other properties. When the prepared magnetic materials were calcined at 200°C, the prepared Fe3O4 was oxidized to Fe2O3, possessing loose‐shaped holes with a high specific area of 325.2 m2/g, a magnetization intensity of 12.5 emu/g, and the N2 adsorption isotherm belongs to porous adsorption type I. Moreover, the magnetic HAP can adsorb 90% phenol in wastewater. This means that it is an excellent recyclable phenol sorbent for sewage treatment. Experiments confirmed that the Freundlich adsorption isotherms model applies to lower phenol concentrations (0–50 mg/L), while for high phenol concentrations (50–500 mg/L) the Langmuir adsorption isotherms model fits. The magnetic sorbents have the capacity to regenerate after reaching adsorption saturation using ethanol as eluant and external magnetic field as separation unit. The efficiency of adsorption was reduced only by 10% over a six time use period.  相似文献   

8.
Samples of all eighteen of the known C2 chondrites have been analyzed thermomagnetically. For eleven of these, initial Fe3O4 content is low (generally <1%) and theJs-T curves are irreversible. The heating curves show variable greater (up to 10 times) than it is initially. This behavior is attributed to the production of magnetite from a thermally unstable phase — apparently FeS. Four of the remaining seven C2 chondrites contain Fe3O4 as the only significant magnetic phase: initial magnetite contents range from 4 to 13%. The remaining three C2 chondrites contain iron or nickel-iron in addition to Fe3O4. These seven C2 chondrites show little evidence of the breakdown of a thermally unstable phase.  相似文献   

9.
Meteoric smoke forms in the mesosphere from the recondensation of the metallic species and silica produced by meteoric ablation. A photochemical flow reactor was used to generate meteoric smoke mimics using appropriate photolytic precursors of Fe and Si atoms in an excess of oxidant. The following systems were studied: (i) Fe+O3/O2, (ii) Fe+O3/O2+H2O, (iii) Fe+Si/SiO+O3/O2 and (iv) Si/SiO+O3/O2. The resulting nano-particles were captured for imaging by transmission electron microscopy, combined with elemental analysis using X-ray (EDX) and electron energy loss (EELS) techniques. These systems generated particle compositions consistent with: (i) Fe2O3 (hematite), (ii) FeOOH (goethite), (iii) Fe2SiO4 (fayalite) and (iv) SiO2 (silica). Electron diffraction revealed that the Fe-containing particles were entirely amorphous, while the SiO2 particles displayed some degree of crystallinity. The Fe-containing particles formed fractal aggregates with chain-like morphologies, whereas the SiO2 particles were predominantly spherical and compact in appearance. The optical extinction spectra of the Fe-containing particles were measured from 300 nm<λ<650 nm. Excellent agreement was found with the extinction calculated from Mie theory using the refractive indices for the bulk compounds, and assuming that the fractal aggregates are composed of poly-disperse distributions of constituent particles with radii ranging from 5 to 100 nm. These sizes were confirmed from measurements of the particle size distributions and microscopic imaging. Finally, the particle growth kinetics of the Fe-containing systems exhibit unexpectedly rapid agglomerative coagulation. This was modelled by assuming an initial period of coalescent particle growth resulting from diffusional (Brownian) coagulation to form primary particles; further growth of these particles is then dominated by long-range magnetic dipole–dipole interactions, leading to the fractal aggregates observed. The atmospheric implications of this work are then discussed.  相似文献   

10.
Summary The stress sensitivitiesS x andS R of susceptibility and remanence for titanomagnetite-bearing rocks are calculated in terms of magnetostriction constants 100 and 111 and anisotropy constantsK 1,K 2 of the magnetic minerals.S x andS R are represented by quite different algebraic expressions but happen to have comparable numerical values over the whole range of titanomagnetite compositions. Both increase strongly with titanium content. This leads to more optimistic calculations of tectonomagnetic effects than with the previously assumed stress sensitivity for pure magnetite.  相似文献   

11.
High-pressure phase transformations of albite,jadeite and nepheline   总被引:1,自引:0,他引:1  
Phase behaviors of albite, jadeite and nepheline have been studied in the diamond-anvil press employing YAG laser heating from about 100 to 280 kbar and at about 1000°C. Incorporating earlier work, the sequences of phase transformations with increasing pressure are as follows:
where the percentages are the decreases in zero-pressure volume from one to the other. Both NaAlSi3O8 hollandite and NaAlSiO4 (CaFe2O4-type) are new sodium aluminosilicates. The latter is the most likely host for sodium in the earth's lower mantle. High-pressure phases or phase assemblages revealed in albite and jadeite by static experiments are poorly defined by shock-wave studies of albitite and jadeite to about 900 and 1200 kbar respectively.  相似文献   

12.
Summary Magnetic and crystallographic properties of solid solutionsxFeTiO3. (1–x) Fe2O3 of hematite (Fe2O3) and ilmenite (FeTiO3), which have rhombohedral crystal structure, are examined in detail for the whole range of 0 x 1. Samples examined are mineral grains separated out from natural rocks and artificially synthesized ones. The minerals of the hematite-ilmenite series for 0.55<x are ferromagnetic and their Curie-point decreases in proportion to increase inx, becoming 0 C aroundx=0.8. Those for 0.55 >x >0 are feeble ferromagnetic, probably being anti-ferromagnetic just same as hematite. Finally probable cause of the ferromagnetism forx>0.55 is briefly discussed. It seems that presence of ferromagnetic ilmenite must always be taken into consideration whenever magnetism of rocks is studied in relation to various geophysical phenomena.
Zusammenfassung Die magnetischen und krystallographischen Eigenschaften der festen LösungenxFeTiO3. (1–x) Fe2O3 von Hämatit (Fe2O3) und Ilmenit (FeTiO3), die eine rhombohedrale Krystallstruktur haben, wurden im ganzen Bereich von 0 x 1 ausführlich untersucht. Die untersuchten Proben waren aus Naturgesteinen getrennten sowie aus zusammengesetzten künstlichen Mineralkörner. Die Minerale der Hämatit-Ilmenitschen Reihe von 0.55<x sind ferromagnetisch, und ihr Curie-Punkt nimmt proportional mit der Zunahme vonx ab, und fallsx ungefähr 0.8 erreicht, wird er 0 C. Die Minerale von 0.55 >x >0 sind hingegen schwach ferromagnetisch, und vielleicht sind sie genau wie das Hämatit antiferromagnetisch. Zum Schlusse wurde die wahrscheinliche Ursache des Ferromagnetismus im Umfang von x>0.55 kurz besprochen. Es scheint, dass man das Vorhandensein von ferromagnetischem Ilmcnit immer dann in Betracht ziehen muss, wenn man den Gesteinmagnetismus in Bezug auf die verschiedenen geophysikalischen Phänomene untersucht.

Résumé On étudie les proprietés magnétiques et cristallographiques des solutions solides rhombohédralesxFeTiO3. (1–x) Fe2O3 de l'hématite (Fe2O3) et de l'ilménite (FeTiO3) pour l'étendue totale de 0 x 1. Les échantillons examinés sont des minéraux séparés par des grains naturels et des grains artificiellement synthétisés. On montre que les minéraux de la série hématite-ilménite sont ferromagnétiques pourx>0.55 et que leur point de Curie diminue en proportion à l'acroissement de x: il est atteind à 0 C quandx est environ 0.8. Les minéraux pour 0.55 >x >0 sont faiblement ferromagnétiques, étant probablement antiferromagnétiques comme l'hématite pure. Finalement, on discute briévement l'origine probable du ferromagnétisme des solutions solides dans l'étenduex>0.55. Il semble que la présence de l'ilménite ferromagnétique doit Être considérée lorsqu'on étudie le magnétisme des roches par rapport aux divers phénomènes géophysiques.
  相似文献   

13.
Sulfate in groundwater has been previously shown to change the reactivity of Fe0 in permeable reactive barriers for reducing chlorinated organics. To better understand the effect and mechanism of SO, the degradation of 1,1,1‐trichloroethane (TCA) by Fe0 in unbuffered aqueous solutions with and without SO was investigated. In a Fe0‐TCA‐H2O system with initial pH of 2.0 to 10.0, the maximum removal rate of TCA was achieved at the initial pH 6.0 with pseudo‐first‐order constant Kobs 9.0 × 10?3/min. But in a Fe0‐TCA‐Na2SO4‐H2O system, the removal rate of TCA decreased remarkably with a reduction in Kobs to 1.0 × 10?3/min, and the pH varied from 6.0 to 9.6, indicating an inhibition of TCA dehydrochlorination by SO. Sulfate remarkably inhibited TCA degradation via changing the route of Fe0 dissolution. It accelerated the dissolution of Fe0 and transformed the intermediate form Fe(OH)ads to Fe2(SO4)ads, which weakened the affinity between Fe and TCA, and thus depressed the degradation of TCA by Fe0.  相似文献   

14.
A magnetic‐sulfonic graphene nanocomposite (G‐SO3H/Fe3O4) was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was used for removal of three cationic dyes: safranine T (ST), neutral red (NR), victoria blue (VB), and three anionic dyes: methyl orange, brilliant yellow, and alizarin red, from environmental water. The experimental conditions were optimized, including pH, amount of adsorbent, adsorption kinetics, adsorption isotherms, ionic strength, etc. The results show that G‐SO3H/Fe3O4 can adsorb cationic dyes more efficiently and selectively than anionic dyes at pH 6.0. In the first 10 min of adsorption time, more than 93% of the cationic dyes were removed by the sorbent. Adsorption kinetics follow the pseudo‐second‐order kinetic model well. The adsorption isotherm coincided with Langmuir and Freundlich adsorption models. The maximum adsorption capacities of G‐SO3H/Fe3O4 for ST, NR, and VB dyes were 199.3, 216.8, and 200.6 mg g?1. The adsorbed cationic dyes were eluted by using different pH values of ethanol as the solvent. The established method was simple, sensitive, and rapid, and was suitable for the adsorption of cationic dyes in environmental water.  相似文献   

15.
Summary The derivatives of the harmonicsP n (k) (sin O)cos kTO andP n (k) (sin O)sin kTO, occurring in the development of the lunar disturbing potential, are derived upto n=4 and for k== 0, 1, ..., n. The equatorial co-ordinates OTO are referred to the Moon's mass centre; the procedure for the solar disturbing potential is formally identical.  相似文献   

16.
Titanomagnetites of basalts and diorites from an off-axis volcanic episode in the Pacific Ocean (Leg 61, DSDP) were studied for their ulvospinel composition and for changes in the iron-titanium ratio with progressive low-temperature oxidation. Thermomagnetic analysis and microscopy indicate that these Fe/Ti spinels show relatively little low-temperature oxidation, despite their Cretaceous age. Microprobe investigation shows that the Fe/Ti spinels have a wide range of ulvospinel content directly reflecting the range of parent rock chemistries. This is an important demonstration that ulvospinel contents are not constant but vary within a restricted range of compositions, namely at least x =0.5 to x=0.75 (Fe2?xTixO4). Recognition of this fact is important in attempting to elucidate changes in cation ratio as a result of progressive low-temperature oxidation.Examination of samples of different oxidation states for cation ratio changes as a result of low-temperature oxidation revealed lower titanium in the more oxidized samples and Ti enrichment in the less oxidized ones. This is probably a reflection of changing x values with progressive crystallization of individual sills, and thus unrelated to cation ratio changes with oxidation.In more than 100 grains analyzed, no evidence was found for a more oxidized shell on the exteriors of grains, suggesting that the oxidation process did not proceed uniformly with respect to grain geometry.  相似文献   

17.
FollowingDmitriev (1960) a rigorous theoretical solution for the problem of scattering by a perfectly conducting inclined half-plane buried in a uniform conductive half-space has been obtained for plane wave excitation. The resultant integral equation for the Laplace transform of scattering current in the half-plane is solved numerically by the method of successive approximation. The scattered fields at the surface of the half-space are found by integrating the half-space Green's function over the transform of the scattering current.The effects of depth of burial and inclination, of the half-plane on the scattered fields are studied in detail. An increase in the depth of burial leads to attenuation of the fields. Inclination introduces asymmetry in the field profiles beside affecting its magnitude. Depth of exploration is greater for quadrature component. An interpretation scheme based on a phasor diagram is presented for the VLF-EM method of exploration for rich vein deposits in a conductive terrain.List of symbols x, y, z Space co-ordinates - Half-space conductivity - 0 Free-space permeability - Excitation frequency (angular) - T Time - h Depth of the half-plane - a Inclination of the half-plane - E x x-Directed total electric field - E x p x-Directed primary electric field - E xo p x-Directed primary electric field atz=0 directly over the half-plane - H y y-Component of total magnetic field - H y p y-Component of primary magnetic field - H y0 p y-Component of primary magnetic field atz=0 directly over the half-plane - H z z-Component of total magnetic field - H z p z-Component of primary magnetic field - J x Surface density ofx-directed scattering current - G Green's function - k 0,K Wave numbers - u,u 0,u 1,u 2 Functions - Space co-ordinate - s Variable in transform domain - Variable of integration - Normalized scattering current - Laplace transform of - N Normalized - , 0, 1, 2 Functions - t Variable of integration - Skin depth - H Total magnetic field - H p Primary magnetic field - H 0 p Primary magnetic field atz=0 directly over the half-plane - M,Q,R,S,U,V Functions - N 1,N 2 Functions  相似文献   

18.
Summary The normal type of serpentinites consists of chrysotile. The magnetite parts are essential parts of the structure of chrysotile serpentinites (primary magnetite). Chrysotile is changed to antigorite by mechanical deformations. The magnetite parts of rock structure are lost and they sat down in the veins of serpentinite rocks (secondary magnetite). In this paper the thermomagnetic diagrams and the results of X-ray investigations of secondary and primary magnetite are described. Some results of susceptibility measurements are given. The secondary magnetite is characterized by a region of oxydation in the interval 280–400° C (secondary magnetite-Fe2O3-Fe2O3). The oxydation to -Fe2O3 is remarkably. On the thermomagnetic diagrams of primary magnetite no typical oxydation region is to be seen. The oxydation: primary magnetite-Fe2O3 is very small. The interval of measured susceptibility values amounts to (10–1500)·10–6 cgs units. The essential variability of the main parts of serpentinite samples is characterized by the great changes of susceptibility values from point to point.The determined values of specific saturation magnetization (Gauss. cm3 g–1), the X-ray powder data, and some results on remanent magnetization are given.
Zusammenfassung Die Normaltypserpentinite bestehen aus Chrysotil. Der Magnetit ist Bestandteil der Struktur der Chrysotilserpentinite (primärer Magnetit). Unter dem Einfluß mechanischer Deformationen geht Chrysotil in Antigorit über. Die Magnetitanteile der Gesteinsstruktur gehen verloren und scheiden sich auf Klüften ab (sekundärer Magnetit). In der vorliegenden Arbeit werden die thermomagnetischen Abhängigkeiten und die Ergebnisse von Röntgenuntersuchungen des sekundären und primären Magnetits beschrieben. Es werden einige Ergebnisse der Suszeptibilitätsmessungen angeführt. Der sekundäre Magnetit wird durch einen Oxydationsbereich im Temperaturintervall 280–400° C charakterisiert (sekundärer Magnetit-Fe2O3-Fe2O3). Die Oxydation zu -Fe2O3 ist beträchtlich. Die thermomagnetischen Diagramme des primären Magnetits zeigen keinen typischen Oxydationsbereich. Die Oxydation: primärer Magnetit-Fe2O3 ist sehr gering. Das Intervall der gemessenen Suszeptibilitätswerte beträgt (10–1500)·10–6 CGS-Einheiten. Die starke Veränderlichkeit der Hauptbestandteile der Serpentinitproben wird durch die großen Änderungen der Suszeptibilitätswerte von Punkt zu Punkt gekennzeichnet.Die gemessenen Werte der Sättigungsmagnetisierung (Gauss.cm3 g–1), der Röntgenuntersuchungen und einige Ergebnisse über die remanente Magnetisierung werden gegeben.
  相似文献   

19.
We present simulations of the 3D nonlinear induction equation in order to investigate the temporal evolution of large-scale magnetic fields in spiral galaxies. Our model includes differential rotation, ambipolar diffusion and, based on small-scale turbulence, eddy diffusivity and the tensorial -effect with magnetic feedback. The nonaxisymmetric spiral pattern and – if considered – the vertical stratification of the galaxy are represented in its density and turbulence profile. Neglecting vertical stratification the lifetime and geometry of an initial magnetic field depend on the correlation time of interstellar turbulence corr . Short correlation times increase the lifetime of the initial magnetic field, but the field is rapidly wound up. Its pitch-angles develop to zero. The magnetic field has disappeared after at most 1 to 1.5 Gyr. A resonance like phenomenon is found by tuning the pattern velocity of the galactic spiral. The simulations then show an exceptional amplification of the magnetic field in the case that the pattern speed and a magnetic drift velocity have similar values. Considering a vertical stratification we achieve sufficiently long living grand-designed magnetic fields excited by dynamo action. The behaviour and geometry of the resulting field is again significantly influenced by the correlation time corr . Small values of corr lead to axisymmetric fields with small pitch-angles and field-concentration between the spiral arms. Increasing the correlation time the solutions show larger pitch-angles; and depending on very large correlation times the galactic dynamo rather generates fields clearly within the spiral arms and having a bisymmetric structure.  相似文献   

20.
The concentration of rock-forming elements, the static magnetic susceptibility κ, spectra of electron paramagnetic resonance, and their relative intensities I are studied in samples from a borehole drilled in Cenozoic sedimentary deposits of southern Western Siberia. All measured values experience appreciable irregular variations with depth. A linear dependence exists between κ and I within the range of their medium and large values; κ and I have maximum values in the same sample, and κmax = 1920 × 10?6SI, κmin = 210 × 10?6 SI, and κav = 630 × 10?6 SI. The magnetic properties of the samples are controlled by Fe2+ ions present in clastic material and by microphases (clusters) with Fe3+ ions of the goethite and lepidocrocite type present in the cement. The theoretically possible magnetic susceptibility of the Fe2+ ion system (provided that all iron exists in this form) is quite comparable with κmin but, even with very high concentrations of Fe2+, does not reach half of κav: (154 < κ(Fe2+) < 254) × 10?6 SI. Anomalously high values of κ are due to a large number of clusters with Fe3+ ions if structural units FeOOH do not dissociate and the interaction of the clusters with hydroxides of aluminum and precipitation medium impedes the process of their coagulation. Otherwise, the cluster sizes gradually increase, an antiferromagnetic structure develops in clusters, and the magnetic susceptibility decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号