首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suite of synthetic titanomagnetites were prepared with compositions Fe2.6?δTi0.4AlδO4 and Fe2.4?δTi0.6AlδO4 (δ = 0, 0.1, 0.2 in both cases). Ball-milling of the synthesized samples produced material in the magnetic monodomain state as indicated by hysteresis loops and the Lowrie-Fuller test. The coercive force of the specimens depends on the Al concentration and lies in the range 1–2 kOe. The TRM induced in the samples is correspondingly “hard”. The low-field (0–1 Oe) TRM acquisition curve is linear. The higher field TRM-H curve is not in agreement with either monodomain or two-domain theoretical models.  相似文献   

2.
Single crystals of approximate composition Fe2.4Ti0.6O4 were prepared from which spherical samples of diameters 1–2 mm were obtained. The measured values of the Königsberger ratio, the ratio of saturation remanence to saturation magnetization and a Lowrie-Fuller test showed that they were multidomain in character. The temperature variation of the coercive force and saturation magnetization was measured between room temperature and the Curie point. The field dependence of intensity of acquired thermoremanent magnetization (TRM) was determined. The predictions of some of the theoretical models for multidomain TRM, which, of necessity, apply to simplifications of real materials (either natural or synthetic), compare favourably with the results of the present study. The validity of the assumptions made in this comparison is discussed.  相似文献   

3.
Equilibrium reversals of Fe2+Mg distribution between the M1 and M2 sites of an orthopyroxene from the Johnstown meteorite were achieved at several temperatures between 700 and 1000°C. One single crystal was used for the whole thermal treatment and for collecting all the X-ray data after quenching. The intracrystalline ion exchange for the bulk chemical composition: (Mg1.453Fe0.441Cr0.024Ca0.054Mn0.015Fe0.005Ti0.003Al0.005)(Si1.960Al0.040)O6 is given by: ln KD = −3027(±39)/T(K) + 0.872(±0.013)> where KD is the distribution coefficient for the reaction: FeM22+ + MgM1 = MgM2 + FeM12+.A transmission electron microscopy (TEM) study of part of the crystal showed the presence of very thin augite lamellae and Guinier-Preston zones indicating a relatively rapid cooling of the host rock at temperatures close to 1000°C. The new temperature scale yields a relatively high quenching temperature of 379 (±8)°C for the pyroxene which appears consistent with a rapid cooling (estimated few degrees per hundred years) of a magmatic cumulate excavated by an impact on its parental body.  相似文献   

4.
Synthetic single crystals of titanomagnetite of nominal composition Fe2.4Ti0.6O4 have been oxidized at 1275°C in controlled gas atmospheres, producing multiphase intergrowths to simulate the natural process of deuteric oxidation. The evolution of the intergrowths was monitored using the conventional techniques of petrology: optical and electron microscopy and X-ray and electron microprobe analyses. In addition, the measured magnetic properties — particularly the temperature-dependence of hysteresis properties — provided further information about the composition and concentrations of magnetic phases, and their domain state, as oxidation proceeded. The evolution of a trellis pattern of ilmenite lamellae, characteristic of the “exsolution” stages of deuteric oxidation, was observed in the oxidized crystals. The interlamellar spinel region consisted of two iron-enriched titanomagnetites, one thought to occur along the lamellar boundaries. The magnetic hardness of both phases was found to be greater than the original homogeneous multidomain titanomagnetite crystals, although neither phase achieved monodomain characteristics, and the stability of thermoremanence (TRM) remained quite low (median destructive fields (MDF) of the order of a few thousend A m?1). The lamellae made little contribution to the total remanence. A sharp rise in magnetic hardness, observed during the post-exsolution stages of oxidation, was due to the presence of fine-grain monodomain magnetite, thought to be distributed within the haemoilmenite matrix, but probably not having been formed by lamellar subdivision. The crystals could now carry an intense and stable TRM with MDFs of many tens of thousands of A m?1.  相似文献   

5.
Magnetic hysteresis of coarse-grained titanomagnetites at room temperature is characterised by low coercive force, low relative remanence, and a high ratio of coercivity of remanence to coercive force. These properties are generally interpreted in terms of multidomain structure. At low temperatures, however, ulvöspinel-rich compositions exhibit hysteresis properties similar to those of single-domain assemblages, and on this basis Radhakrishnamurty and Deutsch have proposed an alternative interpretation of the domain structure of titanomagnetites having x 0.3 in terms of a mixture of single-domain and superparamagnetic particles. Low apparent Curie temperatures are attributed to the effects of thermal agitation above the blocking temperature.

We have examined theoretically the effects of thermal agitation on the low- and high-field thermomagnetic curves and find that observed Curie temperatures in general represent an intrinsic property of the magnetic mineral present, rather than reflecting thermal agitation. The high coercive force and relative remanence at low temperatures for titanomagnetites having x > 0.5 can be explained on the basis of the interaction of domain walls with crystal defects when the large increases in magnetocrystalline anisotropy and magnetostriction with decreasing temperature are taken into account. We discuss the evidence for the existence of domain walls in coarse-grained ulvöspinel-rich titanomagnetites and conclude that multidomain structure is well established.

It is also shown that fine titanomagnetite grains may have more than one blocking temperature. In any temperature interval for which superparamagnetic grains are present they will disproportionately influence susceptibility and low-field hysteresis.  相似文献   


6.
We have investigated the effect of Al3+ on the room-temperature compressibility of perovskite for stoichiometric compositions along the MgSiO3-AlO1.5 join with up to 25 mol% AlO1.5. Aluminous Mg-perovskite was synthesized from glass starting materials, and was observed to remain a stable phase in the range of ∼30-100 GPa at temperatures of ∼2000 to 2600 K. Lattice parameters for orthorhombic (Pbnm) perovskite were determined using in situ X-ray diffraction at SPring8, Japan. Addition of Al3+ into the perovskite structure increases orthorhombic distortion and unit cell volume at ambient conditions (V0). Compression causes anisotropic decreases in axial length, with the a axis more compressive than the b and c axes by about 25% and 3%, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to pressures of at least 100 GPa. Our results show that substitution of Al3+ causes a mild increase in compressibility, with the bulk modulus (K0) decreasing at a rate of −67±35 GPa/XAl. This decrease in K0 is consistent with recent theoretical calculations if essentially all Al3+ substitutes equally into the six- and eight-fold sites by charge-coupled substitution with Mg2+ and Si4+. In contrast, the large increase in compressibility reported in some studies with addition of even minor amounts of Al is consistent with substitution of Al3+ into six-fold sites via an oxygen-vacancy forming substitution reaction. Schematic phase relations within the ternary MgSiO3-AlO1.5-SiO2 indicate that a stability field of ternary defect Mg-perovskite should be stable at uppermost lower mantle conditions. Extension of phase relations into the quaternary MgSiO3-AlO1.5-FeO1.5-SiO2 based on recent experimental results indicates the existence of a complex polyhedral volume of Mg-perovskite solid solutions comprised of a mixture of charge-coupled and oxygen-vacancy Al3+ and Fe3+ substitutions. Primitive mantle with about 5 mol% AlO1.5 and an Fe3+/(Fe3++Fe2+) ratio of ∼0.5 is expected to be comprised of ferropericlase coexisiting with Mg-perovskite that has a considerable component of Al3+ and Fe3+ defect substitutions at conditions of the uppermost lower mantle. Increased pressure may favor charge-coupled substitution reactions over vacancy forming reactions, such that a region could exist in the lower mantle with a gradient in substitution mechanisms. In this case, we expect the physical and transport properties of Mg-perovskite to change with depth, with a softer, probably more hydrated, defect dominated Mg-perovskite at the top of the lower mantle, grading into a stiffer, dehydrated, charge-coupled substitution dominated Mg-perovskite at greater depth.  相似文献   

7.
The low-temperature magnetic hysteresis characteristics of multidomain titanomagnetite were fitted by a mixed coercivity model in which magnetocrystalline-controlled and magnetostriction-controlled domain-wall pinning play an important part. The effective contribution of the former was found to decrease systematically with increasing titanium content for compositions in the range Fe2.48Ti0.52O4Fe2.35Ti0.65O4. In agreement with the model, the observed magnetic remanence transitions and the characteristic peaks on the susceptibility vs. temperature curve became less pronounced as the titanium content increased. The problems in using these features as a means of identifying the carriers of natural remanent magnetization are discussed.  相似文献   

8.
Inclusions of ferropericlase and former (Mg,Fe)(Si,Al)O3 perovskite in diamonds from Kankan, Guinea believed to originate in the lower mantle were studied using Mössbauer spectroscopy to determine Fe3+/ΣFe. Fe3+ concentration in the (Mg,Fe)(Si,Al)O3 inclusion is consistent with empirical relations relating Fe3+/ΣFe to Al concentration, supporting the inference that it crystallised in the perovskite structure at lower mantle conditions. In ferropericlase there is a nearly linear variation of trivalent cation abundance with monovalent cation abundance, suggesting a substitution of the form Na0.5M0.53+O (M=Fe3+, Cr3+, Al3+). Excess positive charge is likely balanced by cation vacancies, where their abundance is observed to increase with increasing iron concentration, consistent with high-pressure experiments. The abundance of cation vacancies is related to oxygen fugacity, where ferropericlase inclusions from Kankan and São Luiz (Brazil) are inferred to have formed at conditions more oxidising than Fe-(Mg,Fe)O equilibrium, but more reducing than Re-ReO2 equilibrium. Fe2+/Mg partition coefficients between (Mg,Fe)(Si,Al)O3 and ferropericlase were calculated for inclusions co-existing in the same diamond using Mössbauer data and empirical relations based on high-pressure experimental work. Most values are consistent with high-pressure experiments, suggesting that these inclusions equilibrated at lower mantle conditions. The measured ferropericlase Fe3+ concentrations are consistent with diamond formation in a region of redox gradients, possibly arising from the subduction of oxidised material into reduced lower mantle. Reduction of carbonate to form ferropericlase and diamond is consistent with a slight shift of Kankan δ13C values to isotopically heavy compositions compared to the worldwide dataset, and could supply the oxygen necessary to satisfy the high Fe3+ concentration in (Mg,Fe)(Si,Al)O3 perovskite, as well as account for the high proportion of ferropericlase in the lower mantle paragenesis. The heterogeneity of lower mantle diamond sources indicates that the composition of lower mantle diamonds do not necessarily reflect those of the bulk mantle.  相似文献   

9.
The electrical conductivity of a single crystal of San Carlos olivine (Fo92, 0.16 wt.% Fe2O3) has been measured as a function of temperature and oxygen fugacity (fO2). After heating to 1338°C at fO2 = 10?12 atm., the conductivity at 950°C was 10?5 (ohm-m)?1, almost 3 orders of magnitude less than that measured in air. This decrease is due to the reduction of Fe3+ to Fe2+. Further heating to 1500°C at fO2 = 10?14 atm., decreased the electrical conductivity at 950°C to 10?6 (ohm-m)?1. When recovered at room temperature, the speciment had Fo96 composition and contained small, opaque blebs distributed throughout the crystal. Derivations of temperature profiles for the earth's mantle from conductivity-depth models must take account of the important role played by iron oxidation state in the electrical conductivity of olivine.  相似文献   

10.
Exsolution microstructures including ilmenite±garnet in clinopyroxene and rutile in garnet are common in clinopyroxenite and eclogite from the Sulu ultrahigh-pressure (UHP) terrane. In order to understand the phase relations and Ti solubility in both garnet and clinopyroxene in a natural TiO2-bearing system, several experiments at 5-15 GPa, 1000-1400°C were carried out using the multianvil high-pressure apparatus. The Hujianlin ilmenite-rich garnet clinopyroxenite showing exsolution microstructure was selected as starting material, because it closely approaches a composition lying in the TiO2-CaO-MgO-FeO-Al2O3-SiO2 system. Except for minor melt in one experiment at 1400°C and 5 GPa, other run products contain majoritic garnet+clinopyroxene±ilmenite (or rutile) and exhibit neoblastic texture. With increasing pressure, Ti and Ca, Mg and Si contents of neoblastic garnet increase with decreasing Al. The principal coupled substitutions are Ca2+Ti4+→2Al3+ and Si4+Mg2+→2Al3+ responding to majorite component increase. Titanium solubility (0.8-4.5 wt% as TiO2) in garnet and GrtTi/CpxTi ratio have a pronounced positive correlation with pressure between 5 and 15 GPa. On the other hand, the coexisting clinopyroxene contains low Ti (0.17-0.53 wt% as TiO2), and shows no significant pressure effect. Rutile exsolution in garnet is coupled to that of pyroxene exsolution; both are exsolved from majoritic garnet on decompression. Therefore, the amount of such exsolved lamellae is a potential indicator of high-pressure metamorphism in exhumed rocks, whereas the TiO2 content of clinopyroxene coexisting with garnet is not sensitive to pressure change.  相似文献   

11.
Bleaching of sandstone has significant applications to tracing hydrocarbon pathways and evaluating the scale of natural gas seepage. Bleaching of sandstones in the northeast of Ordos Basin is mainly distributed in the Mesozoic Yan’an Formation. Studying on petrology, major elements, REEs and trace elements of bleached sandstones and comparing with adjacent sandstones, combining with geologic-geochemical evidences of gas seepage in the northeast of the basin, the bleached sandstones are formed in the acid environment and reducing fluids. Characteristics of petrology show that the contents of kaolinite are high and the color of margin of ferric oxide minerals is lighter than that of the center. Major elements of sandstone samples show high contents of Al2O3 and low ratio of Fe3+/Fe2+. The TFe2O3 content of the bleached sandstone is lower than that of red rock. REE data show that bleached sandstones have low ΣREE contents and Eu-depleted and slightly Ce-enriched. Trace elements show that the bleached sandstones enrich in Co, deplete in Sr, and slightly enrich in Zr and Hf which are close to the values for the green alteration sandstones, and slightly lower than ore-bearing sandstones. Geochemical characteristics of oil-bearing sandstone in the northern basin suggest that the oil-shows are formed by matured Carboniferous-Permian coal bed methane escaping to the surface, and natural gas in field could migrate to the north margin of the basin. The δ 13C (PDB) and δ 18O(PDB) values of calcite cement in the study area range from ?11.729‰ to ?10.210‰ and ?14.104‰ to ?12.481‰, respectively. The δ 13C (PDB) values less than ?10‰ imply the carbon sources part from organic carbon. Comprehensive study suggests that the gas leakage has occurred in the northeastern basin, which is responsible for bleaching of the sandstone on top of the Yan’an Formation.  相似文献   

12.
Magnetic hysteresis loops and the derived hysteresis ratios RH and RI are used to classify the various natural dilute magnetic materials. RI is the ratio of saturation isothermal remanence (IR) to saturation (IS) magnetization, and RH is the ratio of remanent coercive force (HR) to coercive force (HC). The RH and RI values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both RH and RI are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites and thermochemically-altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of RH and RI for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.  相似文献   

13.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

14.
The concentrational control of Fe2+ has been studied in the anoxic hypolimnion of an ice-covered lake with special reference to redox equilibria with the suspended phase. The anoxic bottom water formed during ice conditions differed substantially in terms of vertical distributions from that reported from thermally stratified waters. This was particularly evident for the pH and pe gradients. The main process explaining the Fe2+ concentration profile was a diffusional model in which upwards moving Fe2+ met an opposing O2 flux at the redox cline and precipitated as ferric hydroxide. When the anoxic water column is divided into thin stratums an equilibrium reaction between Fe2+ and amorphous FeOOH explained the Fe2+ concentrations in the upper hypolimnion. Increasing supersaturation was observed at greater depths. Similarly equilibration control of the sulfide concentration by Fe2+ could be shown in the lower hypolimnion. Apparent equilibrium constants for FeS and FeOOH have been calculated together with the eddy diffusion coefficient of Fe2+.  相似文献   

15.
For remanence-bearing minerals (RBM) such as magnetite-titanomagnetite, susceptibility to induced magnetism (M) measured in alternating fields (H AC ) is field-dependent. However, for fields ≤ 400 A/m, measured in an AC induction coil instrument (at 19,100 Hz), susceptibility k 0 = M/H AC is sufficiently linear to provide a reproducible rock (or mineral) magnetic characteristic and its anisotropy may be related to arrangements of minerals in rock, or for single mineral grains to their crystalline or shape anisotropy. For any remanence-bearing mineral at higher fields k HF (= M/H AC ) is not constant and the term susceptibility is not normally used. This study bridges the responses between traditional low-field susceptibility measurements and those due to high applied fields, for example when studying hysteresis or saturation magnetization of RBM. Where |k HF | is measured in alternating fields that peak significantly above 400 A/m the M(H AC ) relation is forced to follow a hysteresis loop in which |k HF | > k 0 for small |H AC | and where |k HF | decreases to zero for very large fields that achieve saturation magnetization. Hysteresis nonlinearity is due to remanence acquired with one field direction requiring a reverse field for its cancellation. We investigate the transition from initial, traditional “low-field” susceptibility (k 0 ) measurements at 60 A/m, through 24 different fields from 400 A/m to 40,000 A/m (for very high k 0 to 80,000 A/m). This reveals M(H AC ) dependence beyond from conventional k 0 through the range of hysteresis behavior in fields equal to and exceeding that required to achieve saturation magnetization (M S ). We show k HF increases with peak H AC until the peak field is slightly less than saturation magnetization in natural rock samples rich in magnetite (TM0 = Fe3O4) and TM60 (Fe2.4Ti0.6O4). All sample suites predominantly contain multidomain grains with subordinate pseudo-single domain and single-domain grains. k/k 0 increases by ≤ 5% for fields up to 2 kA/m. Above 4 kA/m k/ k 0 increases steeply and peaks, usually between 24 kA/m and 30 kA/m where all grains magnetic moments are activated by H AC since this exceeds the coercive force of most grains. For higher peak H AC , k/k 0 declines sharply as increased H AC values more effectively flip M with each field-direction switch, leading to the low gradient at distal portions of the hysteresis loop. For M0-TM60 bearing rocks, susceptibility peaks for fields ~12 kA/m and for magnetite rich rocks up to 24 kA/m. These values are approximately 10% of saturation magnetizations (M S ) reported for the pure minerals from hysteresis DC field measurements. Both the field at peak k/k 0 and the peak k/k 0 value appear to be controlled by the dominant domain structure; multidomain behavior has larger k/k 0 peaks at lower H AC . Stacked k/k 0 versus H AC curves for each sample suite (n = 12 to n = 39) were successfully characterized at the 95% level by a polynomial fit that requires the cubic form k/k 0 = a + bH + cH 2 + dH 3. Thus, for most M-TM bearing rocks, susceptibility and anisotropy of susceptibility (AMS) measurements made on different instruments would be sufficiently precise for most geological applications, if peak alternating fields are ≤700 A/m.  相似文献   

16.
Aluminum incorporation into the high pressure polymorph of TiO2 with the structure of α-PbO2 has been studied from 10 to 20 GPa and 1300 °C by XRD, high-resolution 27Al MAS-NMR and TEM. Al-doped α-PbO2 type TiO2 can be recovered at atmospheric pressure. Al2O3 solubility in α-PbO2 type TiO2 increases with increasing the synthesis pressure. The α-PbO2 type TiO2 polymorph is able to incorporate up to 35 wt.% Al2O3 at 13.6 GPa and 1300 °C, being the substitution of Ti4+ by Al3+ on normal octahedral sites the mechanism of solubility. The transition to the higher pressure TiO2 polymorph with the ZrO2 baddeleyite structure, Akaogiite, has not been observed in the quenched samples at room pressure. The microstructure of the recovered sample synthesized at 16 GPa and 1300 °C points to the existence of a non-quenchable aluminum titanium oxide phase at these conditions.  相似文献   

17.
Epidote and/or chlorite are common minerals in the roots of the fossil geothermal system of Saint Martin (Lesser Antilles). They appear in four distinct assemblages: (1) epidote+actinolite+quartz±magnetite near the contact between the tuffaceous host rocks (andesitic modal composition) and the quartz-diorite intrusion of Philipsburg; (2) epidote+chlorite+quartz in host rocks as far as a lateral distance of about 3 km from the intrusion; (3) epidote+chlorite+haematite+quartz locally in iron and manganese rich host rocks; (4) chlorite±phengite±magnetite appearing as late sealing of porosity in fracture-controlled quartz veins with strongly phengitized wall rocks. All these assemblages constitute a large alteration grading from propylitic alteration to thermal metamorphism (actinolite-bearing assemblage).Detailed microprobe studies of epidotes replacing plagioclases and of chlorites replacing glass and mafic minerals reveal notable compositional variations which have been studied with respect to temperature paleogradients (estimated from fluid inclusions study), distance from the thermal source and fo2 conditions. The mean Ps+Pm [100 × (Fe3+ + Mn3+)/(Al3+ + Fe3+ + Mn3+)] of epidotes vary from 21 in the presence of magnetite near the intrusion to 32 in haematite-bearing iron and/or manganese volcanic and sedimentary formations. The intra-grain chemical scattering of epidotes increases with increasing distance of the pluton and decreasing temperature of crystallization. All the chlorites coexisting with epidote are Mg-rich (XFe<0.50). Their main compositional variation consists in a significant enrichment in magnesium (toward the chlinochlore end member) in presence of haematite. The intra-grain chemical scattering of chlorite (expressed by the aluminium content in the structural formula) increases with increasing distance of the pluton and decreasing temperature of crystallization. Chlorites associated with phengite and magnetite in vein alteration are Fe- and Al-rich. The Mössbauer spectra indicate that the Fe3+ content of chlorite varies between 25 and 32% of total Fe in the presence of epidote; the higher content being attained in the presence of haematite. The Fe3+ content of chlorite associated with magnetite and phengite is 16% of total Fe. The compositional variations of epidote and/or chlorite of the four distinct assemblages observed at Saint Martin result from the combined effects of fO2, temperature, and time of heating. The effect of fO2 is particularly perceptible in the control of the epidote Ps content, of the chlorite XFe ratio of Fe3+ distribution between coexisting epidotes and chlorites. Despite the fact that it may be partially canceled out by the effect of fO2, the variation of compositional ranges of both epidotes and chlorites, which increases toward the outer part of the geothermal system in response to the combination of decreasing temperatures and decreasing time of heating of the rocks, suggests that chemical equilibrium has not been attained in the assemblages bearing epidotes and chlorites.  相似文献   

18.
This study illustrates the degradation of an azo dye, Reactive Yellow 81 (RY81), by the combined irradiation of UV‐C and ultrasound in the presence of homogeneous (Fe2+) and heterogeneous (TiO2, ZnO) catalysts. The efficiency of homogeneous and heterogeneous oxidation systems was evaluated in regard of the decolorization and mineralization of RY81. Decolorization followed pseudo‐first‐order kinetics with homogeneous and heterogeneous catalysts. Complete color removal was accomplished by homogeneous sonocatalytic and sonophotocatalytic oxidation processes with apparent rate constants of 0.96 × 10?3 and 46.77 × 10?3 s?1, respectively, in the presence of Fe2+. However, partial color removal was obtained by heterogeneous sonocatalytic, photocatalytic, and sonophotocatalytic oxidation processes with apparent rate constants of 2.32 × 10?3, 3.60 × 10?3, and 3.67 × 10?3 s?1, respectively, in the presence of ZnO. TiO2 had the worst catalytic effect of all of the oxidation processes. The addition of hydrogen peroxide increased the rate constants of the heterogeneous oxidation processes and decreased the rate constants of the homogeneous oxidation processes. RY81 mineralization was 62.8% for the US/UV/Fe2+ homogeneous oxidation process, which was the best oxidation process, whereas it was 43.5% for the US/UV/ZnO/H2O2 heterogeneous oxidation process within 2 h reaction time.  相似文献   

19.
Metallic iron (Fe0) is often reported as a reducing agent for environmental remediation. There is still controversy as to whether Fe0 plays any significant direct role in the process of contaminant reductive transformation. The view that Fe0 is mostly a generator of reducing agents (e.g. H, H2 and FeII) and Fe oxyhydroxides has been either severely refuted or just tolerated. The tolerance is based on the simplification that, without Fe0, no secondary reducing agents could be available. Accordingly, Fe0 serves as the original source of electron donors (including H, H2 and FeII). The objective of this communication is to refute the named simplification and establish that quantitative reduction results from secondary reducing agents. For this purpose, reports on aqueous contaminant removal by Al0, Fe0 and Zn0 are comparatively discussed. Results indicated that reduction may be quantitative in aqueous systems containing Fe0 and Zn0 while no significant reduction is observed in Al0/H2O systems. Given that Al0 is a stronger reducing agent than Fe0 and Zn0, it is concluded that contaminant reduction in Fe0/H2O systems results from synergic interactions between H/H2 and FeII within porous Fe oxyhydroxides. This conclusion corroborates the operating mode of Fe0 bimetallics as H/H2 producing systems for indirect contaminant reduction.  相似文献   

20.
The most abundant mineral on Earth has a perovskite crystal structure and a chemistry that is dominated by MgSiO3 with the next most abundant cations probably being aluminum and ferric iron. The dearth of experimental elasticity data for this chemically complex mineral limits our ability to calculate model seismic velocities for the lower mantle. We have calculated the single crystal elastic moduli (cij) for (Mg, Fe3 +)(Si, Al)O3 perovskite using density functional theory in order to investigate the effect of chemical variations and spin state transitions of the Fe3+ ions. Considering the favored coupled substitution of Mg2+-Si4 + by Fe3+-Al3+, we find that the effect of ferric iron on seismic properties is comparable with the same amount of ferrous iron. Ferric iron lowers the elastic moduli relative to the Al charge-coupled substitution. Substitution of Fe3+ for Al3+, giving rise to an Fe/Mg ratio of 6%, causes 1.8% lower longitudinal velocity and 2.5% lower shear velocity at ambient pressure and 1.1% lower longitudinal velocity and 1.8% lower shear velocity at 142 GPa. The spin state of the iron for this composition has a relatively small effect (< 0.5% variation) on both bulk modulus and shear modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号