首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
地球物理   11篇
地质学   2篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有13条查询结果,搜索用时 22 毫秒
1.
In this paper, a multi-method approach for the assessment of the stability of natural slopes and landslide hazard mapping applied to the Dakar coastal region is presented. This approach is based on the effective combination of geotechnical field and laboratory works, of GIS, and of mechanical (deterministic and numerical) stability analysis. By using this approach, valuable results were gained regarding instability factors, landslide kinematics, simulation of slope failure and coastal erosion. This led to a thorough assessment and strong reduction in the subjectivity of the slope stability and hazard assessment and to the development of an objective landslide danger map of the SW coast of Dakar. Analysis of the results shows that the slides were influenced by the geotechnical properties of the soil, the weathering, the hydrogeological situation, and the erosion by waves. The landslide susceptibility assessment based on this methodological approach has allowed for an appropriate and adequate consideration of the multiple factors affecting the stability and the optimization of planning and investment for land development in the city.  相似文献   
2.
Water treatment with metallic iron (Fe0) is still based on the premise that Fe0 is a reducing agent. An alternative concept stipulates that contaminants are removed by adsorption, co‐precipitation, and size‐exclusion in a reactive filtration process. This article underlines the universal validity of the alternative concept. It is shown that admixing non‐expansive material to Fe0 as a pre‐requisite for sustainable Fe0‐based filtration systems. Fe0‐based filters are demonstrated an affordable, appropriate, and efficient decentralized water treatment technology.  相似文献   
3.
Over the past 30 years the literature has burgeoned with in situ approaches for groundwater remediation. Of the methods currently available, the use of metallic iron (Fe0) in permeable reactive barrier (PRB) systems is one of the most commonly applied. Despite such interest, an increasing amount of experimental and field observations have reported inconsistent Fe0 barrier operation compared to contemporary theory. In the current work, a critical review of the physical chemistry of aqueous Fe0 corrosion in porous media is presented. Subsequent implications for the design of Fe0 filtration systems are modeled. The results suggest that: (i) for the pH range of natural waters (>4.5), the high volumetric expansion of Fe0 during oxidation and precipitation dictates that Fe0 should be mixed with a non‐expansive material; (ii) naturally occurring solute precipitates have a negligible impact on permeability loss compared to Fe0 expansive corrosion; and (iii) the proliferation of H2 metabolizing bacteria may contribute to alleviate permeability loss. As a consequence, it is suggested that more emphasis must be placed on future work with regard to considering the Fe0 PRB system as a physical (size‐exclusion) water filter device.  相似文献   
4.
Metallic iron (Fe0) is often reported as a reducing agent for environmental remediation. There is still controversy as to whether Fe0 plays any significant direct role in the process of contaminant reductive transformation. The view that Fe0 is mostly a generator of reducing agents (e.g. H, H2 and FeII) and Fe oxyhydroxides has been either severely refuted or just tolerated. The tolerance is based on the simplification that, without Fe0, no secondary reducing agents could be available. Accordingly, Fe0 serves as the original source of electron donors (including H, H2 and FeII). The objective of this communication is to refute the named simplification and establish that quantitative reduction results from secondary reducing agents. For this purpose, reports on aqueous contaminant removal by Al0, Fe0 and Zn0 are comparatively discussed. Results indicated that reduction may be quantitative in aqueous systems containing Fe0 and Zn0 while no significant reduction is observed in Al0/H2O systems. Given that Al0 is a stronger reducing agent than Fe0 and Zn0, it is concluded that contaminant reduction in Fe0/H2O systems results from synergic interactions between H/H2 and FeII within porous Fe oxyhydroxides. This conclusion corroborates the operating mode of Fe0 bimetallics as H/H2 producing systems for indirect contaminant reduction.  相似文献   
5.
6.
7.
8.
Filtration systems containing metallic iron as reactive medium (Fe0 beds) have been intensively used for water treatment during the last two decades. The sustainability of Fe0 beds is severely confined by two major factors: (i) reactivity loss as result of the formation of an oxide scale on Fe0 and (ii) permeability loss due to pore filling by generated iron corrosion products. Both factors are inherent to iron corrosion at pH > 4.5 and are common during the lifespan of a Fe0 bed. It is of great practical significance to improve the performance of Fe0 beds by properly addressing these key factors. Recent studies have shown that both reactivity loss and permeability loss could be addressed by mixing Fe0 and inert materials. For a non‐porous additive like quartz, the threshold value for the Fe0 volumetric proportion is 51%. Using the Fe0/quartz system as reference, this study theoretically discusses the possibility of (i) replacing Fe0 by bimetallic systems (e.g., Fe0/Cu0), or (ii) partially replacing quartz by a reactive metal oxide (MnO2 or TiO2) to improve the efficiency of Fe0 beds. Results confirmed the suitability of both tools for sustaining Fe0 bed performance. It is shown that using a Fe0:MnO2 system with the volumetric proportion 51:49 will yield a filter with 40% residual porosity at Fe0 depletion (MnO2 porosity 62%). This study improves Fe0 bed design and can be considered as a basis for further refinement and detailed research for efficient Fe0 filters.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号