首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   

2.
Mossbauer spectra of57Fe at 77 and 295°K in the plagioclase from basalts 10044 and 12021 show that iron is in the high-spin ferrous state and located at at least two distinct positions with different coordination numbers. Some excess resonant absorption is probably due to Fe3+ although the Fe3+ doublet could not be positively resolved. The ratio Fe3+/(Fe2+ + Fe3+) is estimated to be between 0.02 and 0.1.  相似文献   

3.
The oxygen fugacity and therefore the iron redox state of a melt is known to have a strong influence on the liquid line of descent of magmas and thus on the composition of the coexisting melts and crystals. We present a new method to estimate this critical parameter from electron probe microanalyses of two of the most common minerals of basaltic series, plagioclase and clinopyroxene. This method is not based on stoichiometric calculations, but on the different partitioning behaviour of Fe3+ and Fe2+ between both minerals and a melt phase: plagioclase can incorporate more Fe3+ than Fe2+, while clinopyroxene can incorporate more Fe2+ than Fe3+. For example, the effect of oxidizing a partly molten basaltic system (Fe3+ is stabilized with respect to Fe2+) results in an increase of FeOtotal in plagioclase, but a decrease in the associated clinopyroxene. We propose an equation, based on published partition coefficients, that allows estimating the redox state of a melt from these considerations. An application to a set of experimental and natural data attests the validity of the proposed model. The associated error can be calculated and is on average < 1 log unit of the prevailing oxygen fugacity.In order to reduce the number of different variables influencing the Fe2+/Fe3+ mineral/melt equilibrium, our model is restricted to basaltic series with SiO2 < 60% that have crystallized at intermediate to low pressure (< 0.5 GPa) and under relatively oxidizing conditions (?FMQ > 0; where FMQ is the fayalite–magnetite–quartz oxygen buffer equilibrium), but it may be parameterized for other conditions. A spreadsheet is provided to assist the use of equations, and to perform the error propagation analysis.  相似文献   

4.
The troctolites and olivine‐gabbros from the Dive 6 K‐1147 represent the most primitive gabbroic rocks collected at the Godzilla Megamullion, a giant oceanic core complex formed at an extinct spreading segment of the Parece Vela back‐arc basin (Philippine Sea). Previous investigations have shown that these rocks have textural and major elements mineral compositions consistent with a formation through multistage interaction between mantle‐derived melts and a pre‐existing ultramafic matrix. New investigations on trace element mineral compositions basically agree with this hypothesis. Clinopyroxenes and plagioclase have incompatible element signatures similar to that of typical‐MORB. However, the clinopyroxenes show very high Cr contents (similar to those of mantle clinopyroxene) and rim having sharply higher Zr/REE ratios with respect to the core. These features are in contrast with an evolution constrained by fractional crystallization processes, and suggest that the clinopyroxene compositions are controlled by melt‐rock interaction processes. The plagioclase anorthite versus clinopyroxene Mg#[Mg/(Mg + FeTot)] correlation of the Dive 6 K‐1147 rocks shows a trend much steeper than those depicted by other oceanic gabbroic sections. Using a thermodynamic model, we show that this trend is reproducible by fractionation of melts assimilating 1 g of mantle peridotite per 1 °C of cooling. This model predicts the early crystallization of high Mg# clinopyroxene, consistent with our petrological observation. The melt‐peridotite interaction process produces Na‐rich melts causing the crystallization of plagioclase with low anorthite component, typically characterizing the evolved gabbros from Godzilla Megamullion.  相似文献   

5.
Chemical reactions of plagioclase, biotite and their single minerals, as well as a mineral mixture of (plagioclase+biotite+quartz), with KCl and (KCl+KHCO3) solutions were carried out at 150–400°C and 50–80 MPa. Experiments show that alkaline fluid promotes plagioclase’s changing into potash feldspar, while acid fluid helps plagioclase, potash feldspar and biotite alteration form chlorite and sericite. After chemical reaction the acidity-alkalinity of solutions often changes reversely. It was observed that gold dissolved from the tube wall and recrystallized on the surfaces of biotite and pyrite. Therefore the transportation and enrichment of gold are related to the elementary effect of the fluid-mineral interfaces. Fe3+-Fe2+, as an oxidition-reduction agent, and volatile components Cl- and CO2 play important roles in the reaction process  相似文献   

6.
East-west-trending Mesozoic magnetic anomalies M2 through M22 have been identified in the northern Mozambique Basin. These anomalies are best matched by sea floor created at 50°S trending N120°E and spreading at a rate of around 1.5 cm/yr. The northward increase in age inferred from the identifications of these anomalies are compatible with observed decrease in the “reliable” heat flow values from 1.4 to 1.1 μcal/cm2 s to the north in the basin. The anomalies terminate in the southern part of the Mozambique Channel against a magnetic quiet zone to the north. Both the Mozambique Basin anomalies and those recently observed off Antarctica are strong evidence in favour of a Gondwanaland reconstruction that places Dronning Maud Land against southern Mozambique, and a late Jurassic or older separation between Africa and Antarctica.  相似文献   

7.
Petrological and mineralogical data on amphibolitized gabbros from an Alpine ophiolite massif (Chenaillet Massif, France) are presented. Comparison with metagabbros dredged from the ocean floor shows that synkinematic amphibolite facies conditions may be reached in gabbros after their initial crystallization in the vicinity of the ridge. It is suggested that sub-horizontal plastic flow took place in the gabbroic layer near the axis of a slowly spreading ocean ridge before the intrusion of diabase dykes. This thermo-tectonic regime which at the Chenaillet produced flaser-gabbros and layers of foliated amphibolites with brown hornblende and pargasite, probably also affected most of the other ophiolitic gabbros of the Piemont zone prior to the low-temperature/high-pressure Alpine metamorphism.  相似文献   

8.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

9.
Manganese oxide crusts similar to those reported from the Mid-Atlantic Ridge rift valley by Scott et al. (1974) were dredged at two sites near the Galapagos spreading axis on ocean floor estimated from magnetic anomalies to be 2.4 and 0.3 m.y. old. Compared to the typical ocean-floor manganese deposits attributed to precipitation from seawater, the 2–6 cm thick manganese crusts reported here exhibit very low Fe/Mn and low232Th/238U ratios, as well as lower transition metal and higher manganese concentrations. The manganese crusts were deposited several orders of magnitude faster than the more common hydrogenous nodules; this fact together with other geochemical characteristics and the geophysical environment suggests the manganese deposits reported here are of hydrothermal origin.  相似文献   

10.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   

11.
Gabbroic rocks occur only in the west, and are the oldest intrusions in the Peninsular Ranges Cordilleran batholith. They comprise an olivine-pyroxene gabbronorite series and an amphibole gabbro series both of which contain abundant plagioclase and amphibole. They formed by crystal accumulation and in situ differentiation, in multiple intrusive complexes, and are not considered to be related by fractionation to the granitoid rocks of the batholith.Pure mineral separates of plagioclase, olivine, clinopyroxene, orthopyroxene, and amphibole were obtained by magnetic and heavy-liquid methods from a representative suite of gabbroic rocks. Their major- and trace-element contents were determined by X-ray fluorescence, and the data used to test hypotheses on the genesis and fractionation of the gabbros.The plagioclases range from An98 to An65 in composition, olivines, Fo79 to Fo70, occur in rocks where An>36. All clinopyroxenes are augite with Mg #'s varying from 81.1 to 64.7. Orthopyroxene occurs where An<92, and is generally inverted pigeonite or bronzite, and has Mg #'s ranging from 77.9 to 52.1. The amphiboles include tschermakite, tschermakitic hornblende, pargasite, pargasitic hornblende, ferroan pargasite, magnesio-hornblende, and magnesio-taramite, Mg #'s range from 80.4 to 62.5. Systematic chemical and mineralogical changes confirm that differentiation, controlled by mineral assemblages of plagioclase, olivine, spinel, and clinopyroxene initially, and orthopyroxene, amphibole, and magnetite later, took place between intrusive episodes and in situ.The highly clacic plagioclase coexisting with olivine and amphibole suggests that the gabbros were formed from hydrous mafic magmas. The modal mineralogy of the gabbros, and the chemistry of the minerals is very similar to that of the cumulate blocks of the Lesser Antillean volcanoes. These features confirm that the gabbros were derived from a hydrous mafic magma, with high Al2O3 and low TiO2 contents, typical of orogenic environments.Cumulate minerals from the gabbros show little or no zoning and are considered to have formed in equilibrium with the evolving melts. Selected trace-element contents and distribution coefficients are used to calculate the compositions of the melts. The calculations show that the melts in equilibrium with the olivine-pyroxene gabbronorite series contain approximately 100–200 ppm Ba, 200–400 ppm Sr, 30-10 ppm Ni, 20-10 ppm Co, and 300-100 ppm V. K/Rb ratios of the melts, derived from post-cumulus and prismatic amphiboles, are generally in the range 550-250. These values are typical of calc-alkalic basalts and andesites, and it is suggested that they may have erupted at the surface to form a coeval calc-alkalic volcanic sequence.  相似文献   

12.
The concentration of rock-forming elements, the static magnetic susceptibility κ, spectra of electron paramagnetic resonance, and their relative intensities I are studied in samples from a borehole drilled in Cenozoic sedimentary deposits of southern Western Siberia. All measured values experience appreciable irregular variations with depth. A linear dependence exists between κ and I within the range of their medium and large values; κ and I have maximum values in the same sample, and κmax = 1920 × 10?6SI, κmin = 210 × 10?6 SI, and κav = 630 × 10?6 SI. The magnetic properties of the samples are controlled by Fe2+ ions present in clastic material and by microphases (clusters) with Fe3+ ions of the goethite and lepidocrocite type present in the cement. The theoretically possible magnetic susceptibility of the Fe2+ ion system (provided that all iron exists in this form) is quite comparable with κmin but, even with very high concentrations of Fe2+, does not reach half of κav: (154 < κ(Fe2+) < 254) × 10?6 SI. Anomalously high values of κ are due to a large number of clusters with Fe3+ ions if structural units FeOOH do not dissociate and the interaction of the clusters with hydroxides of aluminum and precipitation medium impedes the process of their coagulation. Otherwise, the cluster sizes gradually increase, an antiferromagnetic structure develops in clusters, and the magnetic susceptibility decreases.  相似文献   

13.
Following the Ediacaran metazoan radiation, the “Cambrian Explosion” set up the major framework of todays’ animal phyla as well as modern marine ecosystem. Here, we present a preliminary investigation on the temporal and spatial (from shallow to deep waters) variations of the early Cambrian ocean chemistry in South China through analyzing a Fe-S-C systematic dataset integrated from literature. Our investigation indicates that the early Cambrian deep ocean in South China was still anoxic and Fe2+-enriched (i.e., ferruginous) although its surface was oxic, and in between a metastable euxinic (anoxic and sulfidic) water zone may have dynamically developed in anoxic shelf waters with an increasing weathering sulfate supply. Furthermore, accompanying marine transgression and regression cycles in the early Cambrian, such a “sandwich” structure in ocean redox chemistry demonstrates five evolutional stages, which can be well correlated to the spatiotemporal patterns of fossil records in South China. The good correlation between metazoan fossil occurrences and water chemistry in South China suggests that early animals possibly possessed ability to inhabit anoxic but generally not euxinic environments as free H2S was fatal to most eukaryotes. This view can well explain why those small shell fauna and sponges disappeared from shelf to slope areas where sulfidic Ni-Mo-rich shales were widely deposited. Thus, we conclude that the spatiotemporal variations of ocean chemistry and its biological effects probably played a key role in the phased animal radiations and “extinctions” in the early Cambrian.  相似文献   

14.
Upper Cretaceous volcanic rocks were collected at 24 sites along the Pontides, N-NE Turkey, for rock magnetic and geochemical studies. Rock magnetic and petrographic methods showed that the lavas are characterized predominantly by titanomagnetites with a mixture of pseudo-single and multi-domain grains, whereas in tephrite single domain titanohematite was dominant. Measurements of magnetic susceptibility and the geochemical properties on different volcanic rock types provide important knowledge about the magnetic stability of the rocks. The magnetic properties are interpreted in terms of the composition, concentration, magma generation. Tephrite and phonotephrites with the highest intensities (5200 mA/m) and high magnetic susceptibility values (2585 × 10−5), largest grain sizes and Fe/Ti values, showing minor or no alteration are the most magnetic stable samples in contrast to dacites with the lowest intensity-magnetic susceptibility (520 mA/m − 573 × 10−5) and high alteration degree. The basanite samples show very low NRM (48–165 mA/m) but very high magnetic susceptibility (2906–3100 × 10−5) values suggesting the alteration of Fe-Ti minerals. It is shown that the magnetic properties of the basic to acidic rocks show a systematic variation with magma differentiation and could be related to fractional crystallization. Major and trace elements revealed that the lavas are compatible with complex magma evolution, with mineral phases of olivine+magnetite+clinopyroxene in basic series, amphibole+ +clinopyroxene in intermediate rocks and plagioclase+clinopyroxene+biotite in acidic series.  相似文献   

15.
The morphology and composition of spinel in rapidly quenched Pu’u ’O’o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3–5 vol.%) and microphenocrysts of spinel (0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5–50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150°C to 1180°C. The oxygen fugacity before quenching was calculated by two independent methods and the log fO2 ranged from −9.2 to −9.9 (delta QFM=−1). The spinel in the Pu’u ’O’o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg)=0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the calculated pre-collection temperatures of the samples show a 5°C drop with distance from the vent. The average Fe2+/(Fe2++Mg) of the spinel in these samples shows a weak positive correlation with decreasing MgO in the glass of these samples. The range in Cr2O3 (0.041–0.045 wt.%) of the glass for these six samples is too small to distinguish a consistent change along the lava tube. The spinel in the Pu’u ’O’o samples shows a zoning trend in a Cr–Al–Fe3+ diagram almost directly away from the Cr apex. This compares with a zoning trend in rapidly quenched MORB samples away from Cr coupled with decreasing Fe3+. The trend away from Cr displayed by spinel in rapidly quenched samples is in marked contrast to the trend of increasing Fe3+ shown by spinel in slowly cooled lava.  相似文献   

16.
Gorringe Bank is situated on the Europe-Africa plate boundary at the eastern end of the Azores-Gibraltar fracture zone. It has two summits, Gettysburg Bank to the Southwest and Ormonde Bank to the northeast.We applied the40Ar/39Ar stepwise heating method to date six samples of the alkaline volcanic rocks, two gabbros from the Ormonde Bank and a dolerite from the Gettysburg Bank. The results that the alkaline volcanism lasted probably for less than 6 Ma(66-60 Ma).Although the nature of this volcanism precludes any subduction feature during its setting, the alkaline volcanism of Ormonde is probably linked to Upper Cretaceous/Eocene compressive tectonic events.The basement rocks of Gorringe Bank reveal distrubed40Ar/39Ar age spectra. One plagioclase and one biotite from a gabbro give evidence for a thermic event whose age is tentatively estimated at about 75 Ma, and related to a variation in the direction of the relative movement between Europe and Africa. The more probable age given by a plagioclase of another gabbro and by a dolerite (110 Ma) corresponds to tilting northeastward of the Gorringe massif.  相似文献   

17.
Heat flow anomalies and their interpretation   总被引:1,自引:0,他引:1  
More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10(n − 1) km in the respective representations.The largest scale of 104 km encompasses heat flow on a global scale. Global heat loss is 4 × 1013 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 103 km. Shields, with similar dimensions, exhibit negative anomalies.The scale of 103 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 102 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere.Beginning with map dimensions of 102 km thermal anomalies of scale 101 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental geothermal systems have thermal anomalies 101 km wide and are capable of producing hundreds of megawatts of thermal energy.The smallest scale addressed in this paper is 101 km. Worldwide interest in exploiting geothermal systems has been responsible for a recent accumulation of heat flow data on the smallest of scales considered here. The exploration nature of the surveys involve 10's of drillholes and reveal thermal anomalies having widths of 100 km. These are almost certainly connected to surface and subsurface fluid discharge systems which, in spite of their restricted size, are typically delivering 10 MW of heat to the near surface environment.  相似文献   

18.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

19.
The δ18O values of eighteen marine evaporites of Precambrian to Recent ages were found to vary from +8 to 25‰ relative to SMOW, while the δ34S values previously measured by Thode and Monster [2] vary from +10 to +38‰ relative to meteoritic sulfur. The results strongly suggest that the δ18O value of ocean sulfate varied with geologic age with a minimum at the Permian age.  相似文献   

20.
In this paper, we analyze the self-reversal of magnetization in titanomagnetites as a function of the Ti content and the distribution of Fe3+ to Fe2+ ion transitions in sublattices (which is associated with the law of charge conservation). The dependence of the Curie point on the Ti concentration and the temperature dependence of the mean magnetic moment per iron atom at different Ti concentrations and different cation distributions in sublattices are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号