首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind,the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.  相似文献   

2.
二维街谷地面加热引起的流场特征的水槽实验研究   总被引:5,自引:0,他引:5  
利用拖曳式水槽,采用激光粒子成像速度场测量系统(PIV),模拟了街谷存在地面加热时流场特征;讨论了环境风场对其的影响。我们发现在静风条件下,街谷中环流完全由热力驱动,对流活动可伸展至街谷上方;在建筑物层顶以上,也可发现水平和垂直方向的运动。这些对流活动有助于基本风场为零时,街谷内外动量和物质的交换。当街谷较宽时,对流形成的涡旋可能为两个以上,形态较为复杂并随时间变化,当街谷变窄时,涡旋蜕化成只有一个。当有弱环境风场存在时,街谷中的对流呈现为一个主涡旋,随着风速增加,涡旋形状更加规则,其中心并向下风向移动。  相似文献   

3.
基于2007年7月青海祁连站的野外加密探空资料,结合高分辨率的三维边界层模式,模拟研究了青藏高原东北边坡复杂地形条件下,边界层对流引起的干动力过程对该地区地形重力波产生及传播的影响机理。结果表明:在不同的背景场强迫下,高原东北边坡复杂地形上空对流和重力波的空间结构存在较大差异。当背景风向与山体垂直时,随着风速增加,山脊背风坡混合层顶附近大气不稳定能量加强,激发了下游区域较强的重力波信号,此时对流线组织性增强、重力波波列较长,高水汽含量的空气被波峰传输到较高的高度,为对流云发展提供了有利条件;当背景风向与山脊走向平行时,山顶上空对流发展旺盛,山脊背风坡混合层顶大气状态较稳定,激发的地形重力波信号较弱且波列较短,整个混合层顶附近水汽较少,对流云形成条件减弱;当背景大气浮力频率减小时,整个区域上空对流发展更加旺盛但组织性减弱,背风坡下游重力波向上传输的距离减小,信号不显著,混合层顶附近水汽分布均匀且变化幅度较小,有利于层状云发展。  相似文献   

4.
Summary A two-dimensional nonhydrostatic numerical model was used to investigate the behaviour of a cold air gravity current, moving along complex terrain. It is found, that the model with a high horizontal and vertical resolution and with a closure scheme, using the turbulent kinetic energy, is suitable to simulate currents, which have the main features of those found in laboratory experiments.Simulations are presented for different orographic structures (mountain and valley), for varying thermal stratification of the environmental atmosphere (neutral, stable and stable with an elevated inversion) and for different heights of the cold air reservoir.The major effect of a hill on the advance of a gravity current is a reduction of the front speed upstream as well as (even stronger) downstream of the obstacle, where the amount of this decrease depends on thermal stratification. Near surface blocking of the air flow on the windward side occurs for all simulations. However, for small depths of the oncoming cold air, the current cannot surmount the hill and remains on the lee side.With 11 Figures  相似文献   

5.
大气边界层强风的阵性和相干结构   总被引:14,自引:5,他引:9  
我国北方春季冷锋过境后,常骤发强风,甚至起沙扬尘,持续数小时甚至一二天,通过对边界层超声风温仪的资料分析,可知大风常叠加有周期为3~6 min的阵风,较有规律,且有明显的相干结构:阵风风速峰期有下沉运动,谷期有上升运动;阵风扰动以沿平均流的顺风方向分量为主,横向和垂直方向的分量都较小,其本质是低频次声波和重力波的混合;阵风沿顺风向且向下传播.周期小于1 min的脉动在水平面上基本是各向同性的不规则的湍涡.大风期间,无论是平均流、阵风和湍流脉动,至少在120 m高度以下,主要都有西风和北风动量下传,感热上传.平均流的动量下传强于由脉动下传的量,与一般天气情况不同,而且阵风与湍流的动量下传的量值差不多.平均流和阵风在动量传送上起相当大的作用.  相似文献   

6.
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space–time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt–Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.  相似文献   

7.
Summary A three-dimensional mesoscale planetary boundary layer model with theE- turbulence closure is used to simulate airflow over a lake of circular shape. A series of model sensitivity studies are performed to examine the effects of lake-land temperature difference, ambient wind magnitude and direction, lake size, surface roughness, the Coriolis force and baroclinic ambient wind conditions on mesoscale lake circulations.The lake-land temperature difference is essentially the basic energy source driving the mesoscale circulations over the lake on synoptically undisturbed days. A lake-breeze convergence zone is predicted by the model due to the differential heating between the land and the water. It is found that spatial and temporal variations of this convergence zone and associated convection are strongly controlled by the direction and the magnitude of the ambient wind. Under southeasterly and southwesterly ambient winds, the lake-breeze convergence zone and the associated convection occur primarily along up wind and lateral sides of the lake with reference to the general direction of the ambient flow. In contrast to the southeasterly and southwesterly ambient winds, the lake-breeze convergence zone and the convection are predicted all around the coastline of the lake under calm wind.The model also predicts a cloudless region over the lake in all the case studies due to divergent nature of the lake-breeze circulation. The lake size is found to have a significant effect in intensifying convection. Surface roughness over the land surface is found to be important in determining the intensity of the convection. The combined effect of the Coriolis force and the differential surface roughness between land and water appear to be the responsible mechanism for producing the asymmetric shape of the lake-breeze convergence zone around the symmetric circular lake. Finally, it was found that an initial baroclinic flow has different mesoscale lake-breeze circulation patterns as compared to an initial barotropic flow.With 16 Figures  相似文献   

8.
复杂山区上空垂直速度场和热力对流活动的理想数值模拟   总被引:3,自引:1,他引:2  
利用英国气象局高分辨率的边界层数值模式BLASIUS,针对中国西北一个复杂山区进行了一系列的理想数值模拟,分析了在不同天气条件下山区上空的垂直速度场分布和对流特征以及地形对热力对流活动的影响,同时讨论了与地形有关的对流触发机制。模式结果表明,复杂山区的垂直运动在稳定层结和风速较大的情况下较易预测,而在中性层结下,山区上空的垂直运动分布随机性强。在Froude数小于0.5的条件下,气流往往被山峰阻塞而在迎风坡造成地形强迫和辐合性抬升,从而易在迎风坡触发深对流活动;在背风坡则由于迎风坡的绕流重新辐合而造成垂直运动。绕流的辐合是触发深对流活动的另一重要因子。在大风或Froude数较大的条件下,地形重力波容易在山地下游被激发。地形重力波与对流活动的相互影响在模式中清楚可见。在适当的条件下,重力波除了可以与对流活动相耦合从而使气团上升到更高的高度外,重力波的走向很可能会影响到深对流系统的传播路径。研究还发现稳定度对相邻两条对流线之间的距离长短也有影响。稳定度较小时,相邻两条对流线之间的平均宽度趋向变大而单个对流线的强度也相应变大。定量化的结论和理论升华值得进一步的数值模拟研究。  相似文献   

9.
小尺度对流的发展和环境间相互作用的一个近似分析   总被引:3,自引:0,他引:3  
巢纪平 《气象学报》1962,32(1):11-18
本文应用一个近似的模式,分析了大气中小尺度对流发展时和环境(平均运动)间的非线性相互作用。分析结果指出,对流除在不稳定和中性稳定层结条件下可以发展外,在稳定层结条件下也可以得到发展,并且扰动的振幅最后均趋于有限值。同时,由于扰动的发展,大气的平均状态也要发生改变,不论开始时大气的层结如何,最后均趋向于中性,而大气的平均风速最后一般都要减小。  相似文献   

10.
We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1–2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux components of sensible heat are the main reason for the unclosed energy balance in the considered situations. This result supports previously published investigations on the energy balance closure.  相似文献   

11.
The wake characteristics of a wind turbine in a turbulent atmospheric boundary layer under different thermal stratifications are investigated by means of large-eddy simulation with the geophysical flow solver EULAG. The turbulent inflow is based on a method that imposes the spectral energy distribution of a neutral boundary-layer precursor simulation, the turbulence-preserving method. This method is extended herein to make it applicable for different thermal stratification regimes (convective, stable, neutral) by including suitable turbulence assumptions, which are deduced from velocity fields of a diurnal-cycle precursor simulation. The wind-turbine-wake characteristics derived from simulations that include the parametrization result in good agreement with diurnal-cycle-driven wind-turbine simulations. Furthermore, different levels of accuracy are tested in the parametrization assumptions, representing the thermal stratification. These range from three-dimensional matrices of the precursor-simulation wind field to individual values. The resulting wake characteristics are similar, even for the simplest parametrization set-up, making the diurnal-cycle precursor simulation non-essential for the wind-turbine simulations. Therefore, the proposed parametrization results in a computationally fast, simple, and efficient tool for analyzing the effects of different thermal stratifications on wind-turbine wakes by means of large-eddy simulation.  相似文献   

12.
齐瑛  傅抱璞 《大气科学》1993,17(1):112-120
本文利用二维高阶矩湍流闭合的中尺度数值模式,模拟并讨论了孤立地形之上由白天谷风环流系统向夜问山风环流系统转换阶段的流场结构.结果指出,残余加热源激发出的重力内波对环流转换阶段的流场演变起着极其重要的作用,同时亦给出了相应的湍流结构图象.  相似文献   

13.
湍流频散对边界层风廓线的影响   总被引:2,自引:0,他引:2  
应用包括湍流粘性和频散的新的Reynolds平均动量方程,分析了边界层的垂直风速廓线,发现包含湍流频散的地面层的风速廓线对经典的风廓线指数规律有一个对数规律的修改;而且在不稳定层结下比在稳定层结下,湍流的频散效应更为显;在中性条件下,指数规律退化为对数规律并且Karman常数被另外一个常数所代替,而这个新常数也可以通过相似理论来获得。  相似文献   

14.
Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m–1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. Shallow polymictic lakes share the characteristic of diurnal mixing. Prominent differences on the duration and frequency of long-lasting thermal stratification are found in these lakes, which may result from the differences of local climate, lake depth, and fetch. A prominent response of thermal stratification to weather conditions is found, being controlled by the stratifying effect of solar radiation and the mixing effect of wind disturbance. Other than the diurnal stratification and convection, the representative responses of thermal stratification to these two factors with contrary effects are also discussed. When solar radiation increases, stronger wind is required to prevent the lake from becoming stratified. A daily average wind speed greater than 6 m s–1 can maintain the mixed state in Lake Taihu. Moreover, wind-induced convection is detected during thermal stratification. Due to lack of solar radiation, convection occurs more easily in nighttime than in daytime. Convection occurs frequently in fall and winter, whereas long-lasting and stable stratification causes less convection in summer.  相似文献   

15.
Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.  相似文献   

16.
Summary The linearized atmospheric equations system is solved analytically in a two layer model. The solutions show that the thermal disturbance located at the interface can induce internal gravity wave, which propagates downstream in the stable layer and brings about flow disturbances in the lower unstable layer. Motion of roll vortices with flow pattern similar to that found in the convective cloud street forms in the lower part of the upper layer and the upper part of the lower layer. If proper content of water vapor exists the cloud lines presenting small angle with the mean wind appear at the top of the lower layer. The effects of the wind speed and the temperature structures of the atmosphere in the lower convective layer and the overlying stable layer on the characteristics of the roll vortices are also discussed in this study.With 7 Figures  相似文献   

17.
2009年“莫拉克”台风登陆过程阵风特征分析   总被引:3,自引:2,他引:1  
李永平  郑运霞  方平治 《气象学报》2012,70(6):1188-1199
利用上海台风研究所移动观测车获取的“莫拉克”台风登陆过程中超声风、温等观测资料对地面阵风特性进行了诊断分析.结果表明,在风速时间序列中叠加有周期为3-7 min的阵风扰动,显现出明显的相干结构,即沿顺风方向阵风风速峰期有下沉运动,谷期有上升运动;阵风扰动的各向异性特征明显,沿顺风方向的阵风扰动能量最大,其次是沿侧向和垂直方向的扰动能量;沿顺风方向的阵风垂直动量通量向下传播,而沿侧风方向阵风扰动动量垂直通量总体贡献接近于0.阵风扰动沿顺风方向的积分空间尺度和时间尺度最大,沿侧风方向和垂直方向其次,均明显大于湍流的积分空间和时间尺度.此外,阵风扰动的其他特征还包括:感热垂直通量极小;当平均风速较大时阵风风向变化幅度较小,而风速较小时阵风风向变化幅度则较大;动力学分析表明,阵风扰动主要表现出重力内波的一些特性.  相似文献   

18.
Four years of continuous tower data collected at the Risø National Laboratory are analyzed to study the climatological influence of a gentle slope on surface winds. Under very stable nocturnal conditions, the surface air tends to flow down the slope, at least intermittently, regardless of the direction of the overlying ambient wind. With more significant upslope ambient wind and only modest stability, downslope gravity flow is normally prevented. However, the slope-buoyancy effect is still of importance in that it retards the upslope flow of cold air. This effect is of climatic importance for the data studied here.  相似文献   

19.
Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.  相似文献   

20.
Summary Flow in long and deep main valleys with tributaries is studied for constant surface heating switched on att=0. The valley flows are obtained from a numerical model which combines slope wind layer equations with equations for the valley flow off the slopes. Much simpler linear models are used for the intepretation of the model results. If there are no sidevalleys an up-valley wind regime evolves in the main valley after the switch-on of the heating which protrudes towards the head. It is shown that the topographic amplification factor which captures the geometry of the valley and stratification are important factors in determining the intensity of the along-valley flow. However the up-valley winds are also quite sensitive to the specification of the boundary conditions at the upper end of the slope wind layers. If sidevalleys are added strong inflow to these tributaries is found only if their topographic amplification factors are larger than that of the main valley. This flow into the tributaries is mainly balanced by downward motion on top of the main valley but flow entering through the mounth of the main valley can contribute as well. Tributaries can induce flow in the main valley long before the main valley's own up-valley wind regime has reached the location of the tributary.With 10 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号