首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》1999,18(10-11):1213-1246
This paper describes the landform and sediment assemblage produced by a surge (in 1948) of the Kongsvegen/Kronebreen tidewater glacier complex in northwest Spitsbergen. The main geomorphological products of this advance are two large thrustmoraine complexes on opposite sides of the fjord, and a system of geometrical ridges revealed on glacier decay. The thrust-moraines are composed largely of diamicton, sandy and muddy gravel, gravelly sand, sand and mud, with minor laminites. All of these appear to be derived from the fjord floor and represent both fine fjord basin sediments and coarse grounding-line fan deposits. Thrusting was the principal mode of emplacement of the sediment onto the adjacent land areas during the 1948 advance. However, the geomorphology of the thrust-moraine complexes on either side of the fjord is quite different, reflecting a transpressive regime on the southwest side (mainly long ridges) and a normal compressive regime on the northeast side (short ridges and pinnacles of a ‘hummocky’ nature). The advance which produced the moraine complex has previously been attributed to a surge of Kongsvegen, but the glaciological and geomorphological evidence suggests that the advance involved both Kongsvegen and Kronebreen. Comparison of the landform assemblage produced by this event with that produced by other tidewater glacier surges demonstrates the diverse range of landform assemblages associated with glacier surges, or other episodes of rapid flow, within glaciomarine environments.  相似文献   

2.
During the last (MIS 2) and older glaciations of the North Sea, a North Sea Lobe (NSL) of the British-Irish Ice Sheet flowed onshore and terminated on the lowlands of eastern England, constructing inset sequences of either substantial ice-marginal deposits and tills or only a thin till veneer, indicative of complex and highly dynamic glaciological behaviour. The glaciation limit represented by the Marsh Tills and the Stickney and Horkstow Moraines in Lincolnshire is regarded as the maximum margin of the NSL during MIS 2 and was attained at ∼19.5 ka as determined by OSL dating of overridden lake sediments at Welton le Wold. A later ice marginal position is recorded by the Hogsthorpe-Killingholme Moraine belt, within which ice-walled lake plains indicate large scale ice stagnation rapidly followed ice advance at ∼18.4 ka based on dates from supraglacial lake deposits. The NSL advanced onshore in North Norfolk slightly earlier constructing a moraine ridge at Garrett Hill at ∼21.5ka. In addition to the large ice-dammed lakes in the Humber and Wash lowlands, we propose that an extensive Glacial Lake Lymn was dammed in the southern Lincolnshire Wolds by the NSL ice margin at the Stickney Moraine. Previous proposals that older glacier limits might be recorded in the region, lying between MIS 2 and MIS 12 deposits, are verified by our OSL dates on the Stiffkey moraine, which lies immediately outside the Garrett Hill moraine and appears to be of MIS 6 age.  相似文献   

3.
The melt-out of material contained within englacial thrust planes has been proposed to result in the formation of stacked moraine sequences with characteristic proximal rectilinear slopes. This model has been applied to explain the formation of Scottish Younger Dryas ice-marginal ('hummocky') moraines on the basis of these morphological characteristics. However, no sedimentological data exist to support this proposal. This article reviews hitherto proposed models of 'hummocky' moraine formation and presents detailed geomorphological and sedimentological results from the NW Scottish Highlands with the aims of reconstructing the dynamics of Younger Dryas glaciers and of testing the applicability of the englacial thrusting model. Exposures demonstrate that moraines represent terrestrial ice-contact fans throughout, with a variety of postdepositional deformation structures being identified in most cases, indicating that glacier retreat was incremental and oscillatory; proximal rectilinear slopes are interpreted as ice-contact faces formed after ice support was withdrawn during retreat. This evidence strongly suggests a temperate glacier regime and short glacier response times similar to those in present-day SW Norway or Iceland. It contradicts the thrusting model and the proposal that Svalbard might form a suitable analogue for Younger Dryas moraines in Scotland.  相似文献   

4.
The quiescent‐phase surge‐type glacier, Kongsvegen, flows confluent with the continuously fast‐flowing Kronebreen in northwestern Spitsbergen. The lower regions of Kongsvegen overlie glaciomarine sediments, which have been incorporated into the ice during multiple surge events. The resulting englacial structures are exposed at the surface and on a cliff section. These structures have variously been interpreted as thrusts, formed by compression, or sediment‐filled crevasses, formed by extension. We collected a grid of closely spaced ground‐penetrating radar profiles in the area adjacent to the cliff section. Several structures were imaged in 3‐D, including a strong subhorizontal basal reflector, which was underlain by a second, weaker subhorizontal reflector. The basal reflector was occasionally reverse faulted, suggesting compression. Clear englacial features extended upwards from it, dipping up‐glacier at angles of <40° and steepening towards the glacier surface; they had complex geometries that changed rapidly cross‐glacier. The structures were orientated at ~30° to ice flow, suggesting modification by lateral compression from Kronebreen. Some of these englacial structures clearly crossed the basal reflector. We conclude that the englacial features imaged are not likely to be derived from crevasse filling and were probably formed by thrusting. The results contribute to our understanding of surge initiation and termination processes, and interpretation of features in the palaeorecord. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes the internal architecture of a push moraine formed by a winter-spring surge of Hagafellsjökull-Eystri (Iceland) in 1998/99. The sedimentary architecture of this push moraine consists of a multilayered slab of glaciofluvial sediments with a monoclinal structure that has been displaced laterally by the advancing ice margin. The crest and ice-distal face of the moraine consist of subhorizontal sediment sheets, while the ice-proximal face dips steeply (45° to 90°) towards the ice margin. The core of the moraine consists of frozen sediment and thin slabs of glacier ice are embedded in its proximal face. The sediment slabs are characterized by both brittle and ductile styles of deformation. We argue that the observed variation in deformation style is dependent on whether the glacial foreland was frozen or unfrozen at the time of displacement. Frozen foreland would behave in a brittle fashion, while unfrozen foreland is likely to have deformed in a more ductile manner. The associated spatial variations in the degree of foreland freezing could be explained by variation in ice-marginal snow cover. We conclude that the thermal regime of the foreland, and the timing of the ice advance, is of importance to the style of internal deformation found within ice-marginal push moraines.  相似文献   

6.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

7.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

8.
Mapping of ice-marginal and glaciolacustrine deposits in the northern Cairngorm Mountains allows the nature of deglaciation following the Last Glacial Maximum (c.18 000 BP) to be reinterpreted. Two ice-dammed lakes were ponded between the Glenmore lobe of the Scottish ice sheet and local glaciers draining northwards from the Cairngorm Mountains. Delta progradation from the southern end of each lake reflects dominant meltwater sources and glacio-hydrological gradients. Sediment facies representing subaqueous mass-flow deposits, lakebottom rhythmites, lower and upper foresets and topsets are associated with prograding delta fronts. Moraines show that the lakes were ice dammed at both ends, evidence that active glaciers existed in the Cairngorm Mountains while ice was retreating from Strath Spey, and that deglaciation was punctuated by readvances of the ice margin. These results indicate that an ice-stagnation model of deglaciation is invalid for most of the duration of ice wastage, but instead support an active-retreat hypothesis with multiple, climatically forced readvances.  相似文献   

9.
Kongsvegen, a surge‐type glacier in Spitsbergen, Svalbard, shares a tide‐water margin with the glacier Kronebreen. The complex has been in retreat since a surge advance of Kongsvegen around 1948. The surface of Kongsvegen displays suites of deformational structures highlighted by debris‐rich folia. These structures are melting out to form a network of sediment ridges in the grounded terminal area. The structures are also visible in a marginal, 1 km long, 5–20 m high cliff‐face at the terminus. Current models for the evolution of deformational structures at Kongsvegen divide the structures into suites based on their orientation and dip, before assigning a mechanism for genesis based on structure geometry. Interpretation of aerial photographs and field mapping of surface structures suggest that many structures were reorientated or advected during the surge. We suggest that many of the deformational structures highlighted by debris‐rich folia represent reorientated, sediment‐filled crevasses. Some evidence of thrusting is apparent but the process is not as ubiquitous as previously suggested. Many deformational structures also appear to have been offset by more recent structures. Mechanisms of structural development must, therefore, be considered within the context of distinct stages of glacier flow dynamics and multiple surge episodes. Furthermore, evidence for thrusting and folding within the glacier systems of Svalbard has been used as the basis for interpreting Quaternary glacial landforms in the UK. The findings of this paper, therefore, have implications for interpretations of the Quaternary record. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The extent, basal conditions and retreat history of a Loch Lomond Stadial glacier are reconstructed based on detailed geomorphological and sedimentological assessment. We present new evidence from the vicinity of Coire Ardair that supports the former existence of a warm-based, locally-fed valley glacier, with probable cold-based ice on the surrounding plateau. This is broadly consistent with modelled creep-dominated flow in the upper catchment and sliding-dominated flow throughout much of the valley. A dense suite of moraines, primarily formed in ice-marginal environments, records a multi-phase recessional history: (1) active and oscillatory retreat; (2) a prolonged ice stillstand; (3) partial ice stagnation with occasional minor readvances; (4) increased oscillatory retreat with a substantial readvance event; and (5) rapid and uninterrupted retreat. We propose that a Coire Ardair glacier responded to sub-centennial scale climate fluctuations, possibly associated with the periodic delivery of warmer air masses to the region, rather than to a single, prominent shift in climate.  相似文献   

11.
青藏高原东南部帕隆藏布江松宗地区晚更新世期间发生了一次可以识别的支谷冰川阻江形成冰川堰塞湖——松宗古湖的事件。松宗滑坡处的湖相沉积剖面厚度≥88m,其中厚达18.33m并具湖相沉积代表性的连续粉质粘土层底部和顶部的光释光年龄分别为22.5±3.3kaB.P.和16.1±1.7kaB.P. , 属末次盛冰期。松宗滑坡处河谷两侧冰碛台地与湖相沉积的接触关系和空间特征指示该湖相沉积与末次盛冰期董曲支谷冰川阻塞帕隆藏布江有关。湖相地层的剖面沉积特征揭示出这个冰川堰塞湖可能贯穿于整个末次盛冰期,但整个帕隆藏布并没有形成统一的山谷冰川。  相似文献   

12.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   

13.
14.
The Sandhills Moraine is a Late Wisconsinan lateral moraine complex on southwest Banks Island. The occurrence of ice-ablation landforms, ground ice slumps, kettle lakes and catastrophic lake drainage in winter suggests the presence of substantial bodies of massive ground ice. The distinctive hummocky topography of the Sandhills Moraine is thought to reflect partial melt-out of this ice. Stratigraphic observations indicate that the ice is overlain irregularly and unconformably by glacigenic sediments, notably pebbly clay (till) and/or sandy gravels (outwash), while the ice itself possesses numerous and variable mineral inclusions, faults and foliations. Petrofabric analyses indicate a strongly preferred orientation to the ice crystals. It is suggested that these characteristics are best explained if the ground ice is interpreted as relict glacier ice.  相似文献   

15.
Traditionally, geometrical ridge networks are interpreted as the product of the flow of subglacial sediment into open basal crevasses at the cessation of a glacier surge (‘crevasse-fill’ ridges). They are widely regarded as a characteristic landform of glacier surges. Understanding the range of processes by which these ridge networks form is therefore of importance in the recognition of palaeosurges within the landform record. The geometrical ridge network at the surge-type glacier Kongsvegen in Svalbard, does not form by crevasse filling. The networks consist of transverse and longitudinal ridges that can be seen forming at the current ice margin. The transverse ridges form as a result of the incorporation of basal debris along thrust planes within the ice. The thrusts were apparently formed during a glacier surge in 1948. Longitudinal ridges form through the meltout of elongated pods of debris, which on the glacier surface are subparallel to the ice foliation and pre-date the surge. This work adds to the range of landforms associated with glacier surges.  相似文献   

16.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

17.
Tropical glaciers of the Cordillera Blanca, Perú are rapidly thinning and retreating as a result of climate warming. The retreat of these glaciers along narrow linear bedrock valleys has increased the number and size of moraine-dammed glacial lakes formed in the valleys. This study aims to identify the geomorphological and sedimentological characteristics of an enlarging moraine-dammed supraglacial lake (Llaca Lake) in the Cordillera Blanca. Field-based sedimentological observations and geomorphological mapping were combined with remotely sensed data and a photogrammetric model derived from aerial surveys by an uncrewed aerial vehicle to identify landform-sediment assemblages. The geomorphological and sedimentological characteristics of Llaca Lake are synthesized into three landsystem zones: Zone 1: distal portions of Llaca Lake and the latero-frontal moraine; Zone 2: the central zone of ice-cored hummocks; and Zone 3: the active glacier margin. These zones are differentiated based on the spatial distribution of landforms, sediments, and active geomorphological processes. This is the first study to describe the landform-sediment assemblages in a tropical moraine-dammed supraglacial lake system and provides a framework for further landsystem element analysis of these growing supraglacial lakes in rapidly deglaciating high-altitude environments.  相似文献   

18.
Many glaciated valleys in Scotland contain distinctive, closely spaced ridges and mounds, which have been termed ‘hummocky moraine’. The ridges and mounds are widely interpreted as ice-marginal moraines, constructed during active retreat of mainly temperate glaciers. However, hummocky terrain can form by various processes in glacial environments, and it may relate to a range of contrasting glaciodynamic regimes. Thus, detailed geomorphological and sedimentological studies of hummocky surfaces in Scottish glaciated valleys are important for robust interpretations of former depositional environments and glacier dynamics. In this contribution, we examine irregularly shaped ridges and mounds that occur outside the limits of former Loch Lomond Readvance (≈ Younger Dryas; ~ 12.9–11.7 ka) glaciers in the Gaick, Central Scotland. These ridges and mounds are intimately associated with series of sinuous channels, and their planform shape mimics the form of the adjacent channels. Available exposures through ridges in one valley reveal that those particular ridges contain lacustrine, subglacial, and glaciofluvial sediments. The internal sedimentary architecture is not related to the surface morphology; thus, we interpret the irregularly shaped ridges and mounds as erosional remnants (or interfluves). Based on the forms and spatial arrangement of the associated channels, we suggest that the ridges and mounds were generated by a combination of ice-marginal and proglacial glaciofluvial incision of glaciogenic sediments. The evidence for glaciofluvial incision, rather than ice-marginal moraine formation, at pre-Loch Lomond Readvance glacier margins in the Gaick may reflect differences in glaciodynamic regimes and/or efficient debris delivery from the glacier margins to the glaciofluvial systems.  相似文献   

19.
This paper investigates the relative importance of climatic and topographic factors on the fluctuations of two adjacent palaeoglaciers in the Chilean Lake District. Geomorphological mapping of the landforms around two lakes occupied by the palaeoglaciers has identified a series of intersecting moraine limits and ice-marginal meltwater channels, which allow the relative timing of glacier fluctuations to be established. The broad pattern of advance and retreat is the same in the two basins, with at least one synchronous major advance sometime after 19 500 yr BP, but there is also evidence of discordant behaviour, with one glacier advancing less often and lagging the other glacier during retreat. Seventeen radiocarbon dates suggest a similar chronology to other palaeoglaciers in the Chilean Lake District, but the advance after 19 500 yr BP may have been 1500 14C yr later than major advances of palaeoglaciers situated immediately south. The empirical evidence of differential behaviour can be simulated by a glaciological model, which suggests that the differences in glacier response are due to contrasts in basin topography. Contrasts of this magnitude between the timing of some glacier advances has important implications for regional and interhemispheric correlation of Chilean Lake District glacier chronologies to other climate proxy records. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
新龙古冰帽的若干特征   总被引:2,自引:0,他引:2  
新龙古冰帽位于沙鲁里山北部,古冰帽面积为2000km~2。海拔4600m以上湖群遍布,冰碛物撒满高原面,此即为古冰帽的判识标志。古冰帽分中心区与外围山谷冰川区,遗留有冰蚀湖、蚀碛均夷面、冰蚀丘陵、冰川槽谷、羊背石、鼓丘、侧碛堤等多种地貌类型。本冰帽演化经历了三次冰期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号