首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   

2.
A preliminary sinkhole susceptibility analysis has been carried out in a stretch 50 km2 in area of the Ebro valley alluvial evaporite karst (NE Spain). A spatial database consisting of a sinkhole layer and 27 thematic layers related to causal factors was constructed and implemented in a GIS. Three types of sinkholes were differentiated on the basis of their markedly different morphometry and geomorphic distribution: large subsidence depressions (24), large collapse sinkholes (23), and small cover-collapse sinkholes (447). The susceptibility models were produced analysing the statistical relationships between the mapped sinkholes and a set of conditioning factors using the Favourability Functions approach. The statistical analyses indicate that the best models are obtained with 6 conditioning factors out of the 27 available ones and that different factors and processes are involved in the generation of each type of sinkhole. The validation of two models by means of a random-split strategy shows that reasonably good predictions on the spatial distribution of future dolines may be produced with this approach; around 75% of the sinkholes of the validation sample occur on the 10% of the pixels with the highest susceptibility and about 45% of the area can be considered as safe.  相似文献   

3.
This contribution analyses the processes involved in the generation of sinkholes from the study of paleokarst features exposed in four Spanish Tertiary basins. Bedrock strata are subhorizontal evaporites, and in three of the basins they include halite and glauberite in the subsurface. Our studies suggest that formation of dolines in these areas results from a wider range of subsidence processes than those included in the most recently published sinkhole classifications; a new genetic classification of sinkholes applicable to both carbonate and evaporite karst areas is thus proposed. With the exception of solution dolines, it defines the main sinkhole types by use of two terms that refer to the material affected by downward gravitational movements (cover, bedrock or caprock) and the main type of process involved (collapse, suffosion or sagging). Sinkholes that result from the combination of several subsidence processes and affect more than one type of material are described by combinations of the different terms with the dominant material or process followed by the secondary one (e.g. bedrock sagging and collapse sinkhole). The mechanism of collapse includes any brittle gravitational deformation of cover and bedrock material, such as upward stoping of cavities by roof failure, development of well-defined failure planes and rock brecciation. Suffosion is the downward migration of cover deposits through dissolutional conduits accompanied with ductile settling. Sagging is the ductile flexure of sediments caused by differential corrosional lowering of the rockhead or interstratal karstification of the soluble bedrock. The paleokarsts we analysed suggest that the sagging mechanism (not included in previous genetic classifications) plays an important role in the generation of sinkholes in evaporites. Moreover, collapse processes are more significant in extent and rate in areas underlain by evaporites than in carbonate karst, primarily due to the greater solubility of the evaporites and the lower mechanical strength and ductile rheology of gypsum and salt rocks.  相似文献   

4.
In karst-rich regions, it is inevitable that roadways cross karst landscapes. Road building across such terranes faces environmental and engineering challenges because of impacts on water quality from stormwater runoff and concerns of sinkhole collapse under or near roadways. When highway runoff drains rapidly into subsurface conduit networks through open sinkholes and/or sinking streams, the impact of the runoff on the karst aquifer can be qualitatively evaluated by mixing cell models. Formulation of a comprehensive stormwater runoff management plan prior to roadway construction can minimize the associated adverse impacts. The commonly used best management practices help manage the stormwater runoff effectively in some sites. Site-specific management plans are preferable for other sites because of concerns of flooding and land stability. Proactive measures should be taken to identify areas of the greatest sinkhole collapse risk along the proposed route and the associated groundwater drainage patterns.  相似文献   

5.
The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing.  相似文献   

6.
Sinkhole development is unlikely in desert areas with very low precipitation. However, a few cases of land subsidence and sinkhole development took place within the suburbs of Kuwait City. A few sinkholes developed in a sudden and rapid way, leading to great economic losses. In this paper the mechanism and causes of such a land subsidence are described. Decline in groundwater level and downward infiltration of excess irrigation are suggested to be the main factors in the development of the land subsidence in Kuwait. Urbanization and excessive garden irrigation are most probably the triggers of the sudden and rapid land subsidence.  相似文献   

7.
The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (<1 sinkhole/100 km2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing the detection frequency by land-use groups, particularly for agricultural land-use areas where pesticide use would be expected to be higher and more uniform areally compared to urban and forested areas. Although areas with agricultural land use and a high sinkhole density were most vulnerable (median nitrate-N concentration was 3.7 mg/L, 11% of samples exceeded 10 mg/L, and had the highest frequencies of pesticide detection), areas with agricultural land use and low sinkhole density still were vulnerable to contamination (median nitrate-N concentration was 1.5 mg/L, 8% of samples exceeded 10 mg/L, and had some of the highest frequencies of detections of pesticides). This may be due in part to incomplete or missing data regarding karst features (such as buried sinkholes, low-permeability material in bottom of sinkholes) that do not show up at the scales used for regional mapping and to inconsistent methods among states in karst feature delineation.  相似文献   

8.
Bellechester, Minnesota, is a small community of approximately 155 residents located on the county line between Goodhue and Wabasha counties in southeast Minnesota's karst region. Bellechester is served by a 21-year-old wastewater treatment facility (WWTF) consisting of three waste-stabilization ponds. On 28 April 1992 six sinkholes were discovered to have drained cell 2 of the WWTF resulting in the loss of approximately 8.7×106 1 of partially treated effluent and about 600 m3 of soil into previously undetected subsurface voids of unknown dimensions. In the week following the collapse, approximately 200 water wells located within a 5-km radius of the WWTF were sampled in an after-the-fact, emergency sampling program. Twelve samples with elevated fecal coliform levels, 18 samples with nitrate-nitrogen greater than the 10 mg/1 standard, and no samples with elevated chlorides were found. However, the elevated levels could not be unambiguously attributed to the WWTF collapse. This is the third WWTF to fail by sinkhole collapse in southeast Minnesota since 1974. All three collapsed lagoons have been located in similar geomorphic and stratigraphic settings. However, at least two lagoons have collapsed in the adjacent area in northeast Iowa, and these lagoons are located at different stratigraphic positions. Twenty-two WWTFs constructed in southeast Minnesota's karst region in the last 25 years have been identified as subject to potential sinkhole collapse. An unknown but significant number of manure storage lagoons, flood control structures, etc., have also been constructed in the karst region and are at risk. Public agencies are beginning to develop plans to deal with the risk associated with existing and future waste lagoons in this environment. The critical hydrogeologic parameters that can be used to prioritize the risk of collapse at existing facilities include: (1) the lithology of the first bedrock beneath each lagoon, (2) the thickness of surficial materials between the lagoon and the bedrock surface, (3) the presence and construction of liners (seepage rate), and (4) the proximity to existing sinkholes.  相似文献   

9.
This paper presents the overall sinkhole distributions and conducts hypothesis tests of sinkhole distributions and sinkhole formation using data stored in the Karst Feature Database (KFD) of Minnesota. Nearest neighbor analysis (NNA) was extended to include different orders of NNA, different scales of concentrated zones of sinkholes, and directions to the nearest sinkholes. The statistical results, along with the sinkhole density distribution, indicate that sinkholes tend to form in highly concentrated zones instead of scattered individuals. The pattern changes from clustered to random to regular as the scale of the analysis decreases from 10–100 km2 to 5–30 km2 to 2–10 km2. Hypotheses that may explain this phenomenon are: (1) areas in the highly concentrated zones of sinkholes have similar geologic and topographical settings that favor sinkhole formation; (2) existing sinkholes change the hydraulic gradient in the surrounding area and increase the solution and erosional processes that eventually form more new sinkholes.  相似文献   

10.
Flooding in karst terranes is a commonly occurring geo-hazard. It causes damage to property, businesses, and roadways. It can lead to the formation of cover-collapse sinkholes and groundwater contamination. Generally, three types of flooding or their combinations are related to karst: recharge-related sinkhole flooding, flow-related flooding, and discharge-related flooding. Understanding of the type of flooding is essential for solving the flooding problem. Areas prone to karst flooding should be recognized, and restrictions and laws on land use should be implemented. Runoff and erosion control plans should address the unique characteristics of karst features. Digging out clogged sinkholes, creating retention basins, or installing Class V Injection Wells are possible solutions to improve drainage of storm water. Solutions to flooding problems in karst areas should also be coordinated with the water quality control to prevent groundwater contamination.  相似文献   

11.
The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5–2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region  相似文献   

12.
In 1995 a sinkhole suddenly formed at Camaiore (Tuscany, Italy), causing destruction or heavy damages to several houses and resulting in the evacuation of many people. To understand the causes, for the formation and evolution of the collapse, surface and underground geologic features were investigated and reconstructed on the basis of geologic and geognostic surveys. The sinkhole area is underlain by thick alluvial deposits that cover a bedrock consisting of the Calcare cavernoso formation. This formation results from hydration and dissolution of Triassic evaporites and has a characteristic spongy and vacuolate texture. The bedrock contains karst cavities, generally filled by breccia and/or alluvial materials. Thus, the sinkhole disaster could be ascribed to deep collapse of a cave in the bedrock, and might be considered a distant effect of ancient karst phenomena in evaporites.  相似文献   

13.
Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

14.
Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

15.
Sinkholes and land subsidence are among the main coastal geologic hazards. Their occurrence poses a serious threat to the man-made environment, due to the increasing density of population, pipelines and other infrastructures along the coasts, and to the catastrophic nature of the phenomena, which generally occur without any premonitory signs. To assess the potential danger from sinkholes along the coast, it is important to identify and monitor the main factors contributing to the process. This article reports a methodology based on sequential stratigraphic, hydrogeological and geophysical investigations to draw up a susceptibility map of sinkholes in coastal areas. The town of Casalabate situated in the Apulia region (southern Italy), affected by a long history of sinkhole phenomena, is here presented as an example. The approach proposed is based on sequential stratigraphical, geomorphological and geophysical surveys to identify the mechanisms of sinkhole formation and to provide a zonation of the areas in which further sinkhole phenomena may likely occur. Interpretation of the ground penetration radar and electrical tomography profiles has enabled us to identify the potentially most unstable sectors, significantly improving the assessment of the sinkhole susceptibility in the area. The proposed methodology is suitable to be exported in other coastal areas where limestone bedrock is not directly exposed at the surface, but covered by a variable thickness of recent deposits.  相似文献   

16.
Extensive research has been done on investigation, monitoring, risk evaluation and land management to prevent formation of sinkholes and subsidences in karst terranes. Little emphasis is, however, given to the various processes and methodologies with respect to their remediation. Sinkholes are a surface symptom of complicated erosion and deformation processes that occur on the surface and in the subsurface. The specific method or combination of methods used to mitigate a sinkhole or subsidence depends on the complexity of the conceptual site model composed of influencing factors and triggering mechanisms, depth and lateral extent of instability, impact on existing infrastructure, and existing and reasonably anticipated land uses. Many sinkhole and subsidence rehabilitation methods including dynamic compaction, construction of inverted filters, compaction grouting and construction of water plugs are presented; however, each sinkhole must be treated uniquely when a decision is made on the most appropriate rehabilitation method. A case study was presented to illustrate how the conceptual site model and remedial alternative analysis approach were used to determine the preferred method for sinkhole remediation.  相似文献   

17.
 Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) – broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology. Received: 28 July 1998 · Accepted: 9 September 1998  相似文献   

18.
An active sinkhole around 100 m long has been investigated in the city of Zaragoza (NE Spain). Subsidence activity on this depression, including the sudden occurrence of a collapse sinkhole 5 m across, led to the abandonment of a factory in the 1990s. At the present time, a building with 100 flats and shallow pad foundations partially built on the sinkhole, is affected by rapid differential settlement. The development of the sinkhole results from the karstification of the halite- and glauberite- bearing bedrock and the sagging and collapse of the overlying bedrock and alluvium, more than 30 m thick. GPR and electrical resistivity profiles have provided information on the distribution and geometry of the subsidence structure. The application of the trenching technique and geochronological methods (AMS and OSL dating) has allowed us to infer objective and practical data on the sinkhole including (1) Limits of the subsidence structure, (2) subsidence mechanisms, (3) cumulative subsidence (>408 cm), (4) subsidence rates on specific failure planes (>1.8 cm/year), (5) episodic displacement regime of some fault planes. The available information indicates that the progressive deformation recorded in the building will continue and might be punctuated by events of more rapid displacement. This work illustrates the practicality of the trenching technique for the study of sinkholes in mantled karst areas.  相似文献   

19.
Salento, the southern portion of Apulia region (SE Italy), is a narrow and elongated peninsula in carbonate rocks, with prevailing low coastlines, locally interrupted by high rock cliffs. The long stretches of low coasts are marked by typical karst landforms consisting of collapse sinkholes. As observed in many other karst coastal settings worldwide, development of sinkholes may be particularly severe along the coasts, where both natural and anthropogenic processes contribute to accelerate the dissolution of carbonate rocks and subsidence processes, even influencing the coastline evolution. Following a previous study, where the main features of sinkholes at Torre Castiglione (Taranto province) were investigated and described, and a preliminary susceptibility map produced, at the light of updated data and elaborations in the present paper we perform a detailed morphometric analysis on the sample of identified sinkholes. The main morphometric parameters generally used for sinkhole characterization have been considered in this study: shape of the sinkhole, azimuth and length of maximum and minimum axes, depth, elongation ratio, and distance from the shorelines. Each of them is described, both as individual parameter and in conjunction with the others, in the attempt to identify the main factors controlling development of sinkholes in the area, and their evolution as well. With regard to this latter aspect, beside simple morphometry of the sample of sinkholes at Torre Castiglione, we also focused our attention on the likely relationships existing between distribution and shape of the sinkholes and the tectonic discontinuities. To investigate the matter, a three-stage analysis has been carried out in this study by means of: field measurements of the fractures bounding the sinkholes, field measurement of the long axes azimuth of the elongated sinkholes, comparison of the previously described sets with the strikes of the main regional geological structures. The obtained results show, in addition to the coincidence of the main regional discontinuity systems with the major axis of elongated sinkholes, a clear control exerted by development and evolution of the sinkholes on the formation of coastal inlets and bays. Eventually, the approach here presented may be applied in other karst coastal sinkhole-prone areas, to gain new knowledge on the genesis and evolution of coastal sinkholes, and to properly evaluate the hazard they pose to the anthropogenic environment.  相似文献   

20.
Sinkhole formation in Florida is a common event. The Florida karst plain is significantly altered by human development and sinkholes cause considerable property damage throughout much of the state. We present in this paper a morphometric analysis of karst depressions in the Tampa Bay area, and the relation with the known distribution of sinkholes. We selected the Tampa Bay area because it is particularly susceptible to the evolution of karst depressions in relation with development of the built-up environment. Karst depressions were mapped from the 1:24,000 USGS topographic maps and a morphometric analysis was performed by using parameters such as shape, circularity index, perimeter, area, length, width, and orientation. Maps showing the distribution of depression density, and the sectors with greatest areas of karst depression were produced using a GIS. These results were compared with data compiled from the database of sinkhole occurrences in Florida maintained by the Florida Geological Survey. Our analysis demonstrates that the distribution of new sinkhole occurrences differs from the distribution of existing sinkholes, indicating that there are processes acting today that are influencing karst landscape formation that are different from those acting in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号