首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An understanding of what influences sinkhole formation and the ability to accurately predict sinkhole hazards is critical to environmental management efforts in the karst lands of southeastern Minnesota. Based on the distribution of distances to the nearest sinkhole, sinkhole density, bedrock geology and depth to bedrock in southeastern Minnesota and northwestern Iowa, a decision tree model has been developed to construct maps of sinkhole probability in Minnesota. The decision tree model was converted as cartographic models and implemented in ArcGIS to create a preliminary sinkhole probability map in Goodhue, Wabasha, Olmsted, Fillmore, and Mower Counties. This model quantifies bedrock geology, depth to bedrock, sinkhole density, and neighborhood effects in southeastern Minnesota but excludes potential controlling factors such as structural control, topographic settings, human activities and land-use. The sinkhole probability map needs to be verified and updated as more sinkholes are mapped and more information about sinkhole formation is obtained.  相似文献   

2.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   

3.
Formation mechanism of large sinkhole collapses in Laibin,Guangxi, China   总被引:1,自引:1,他引:0  
On June 3, 2010, a series of karst sinkholes occurred at Jili village surrounded by Gui-Bei highway, Wu-Ping highway and Nan-Liu High-Speed Railway in Laibin, Guangxi, China. The straight-line distances from an large sinkhole pit, 85 m in diameter and 38 m in depth, to the above mainlines are 200, 600 and 500 m, respectively. Several investigation methods including geophysical technology, borehole and well drilling, groundwater elevation survey and hydrochemistry analysis of groundwater were used to study the formation mechanisms of these sinkholes. Based on the results, the spatial distribution of the Jili underground river was confirmed with a strike of SN along the middle Carboniferous limestone bedrock and the Quaternary deposits controlled the sinkhole formation. In addition, both historical sinkhole events and analysis of the groundwater–air pressure monitoring data installed in the underlying karst conduit system indicate that sinkholes in this area are more likely induced by extreme weather conditions within typical karst geological settings. Extreme weather conditions in the study area before the sinkhole collapses consisted of a year-long drought followed by continuous precipitation with a daily maximum precipitation of 442 mm between May 31 and June 1, 2010. Typical geological conditions include the Jili underground river overlain by the Quaternary overburden with thick clayey rubble. Especially in the recharge zone of the underground river, a stabilized shallow water table was formed in response to the extreme rainstorm because of the presence of the thick clayey rubble. When the underground conduit was flooded through the cave entrance on the surface, air blasting may have caused the cave roof collapse followed by formation of soil cavities and surface collapses. Borehole monitoring results of the groundwater–air pressure monitoring show that the potential karst sinkhole can pose threats to Shanbei village, the High-Speed Railway and the Wu-Ping highway. Local government needs to be aware of any early indicators of this geohazard so that devastating sinkholes can be prevented in the future. The results also suggest that groundwater–air pressure monitoring data collected both the Quaternary deposits and the bedrock karst system provide useful indicators for potential sinkhole collapses in similar karst areas where sinkholes usually occur during rainy season or karst groundwater level is always under the rockhead.  相似文献   

4.
This contribution analyses the processes involved in the generation of sinkholes from the study of paleokarst features exposed in four Spanish Tertiary basins. Bedrock strata are subhorizontal evaporites, and in three of the basins they include halite and glauberite in the subsurface. Our studies suggest that formation of dolines in these areas results from a wider range of subsidence processes than those included in the most recently published sinkhole classifications; a new genetic classification of sinkholes applicable to both carbonate and evaporite karst areas is thus proposed. With the exception of solution dolines, it defines the main sinkhole types by use of two terms that refer to the material affected by downward gravitational movements (cover, bedrock or caprock) and the main type of process involved (collapse, suffosion or sagging). Sinkholes that result from the combination of several subsidence processes and affect more than one type of material are described by combinations of the different terms with the dominant material or process followed by the secondary one (e.g. bedrock sagging and collapse sinkhole). The mechanism of collapse includes any brittle gravitational deformation of cover and bedrock material, such as upward stoping of cavities by roof failure, development of well-defined failure planes and rock brecciation. Suffosion is the downward migration of cover deposits through dissolutional conduits accompanied with ductile settling. Sagging is the ductile flexure of sediments caused by differential corrosional lowering of the rockhead or interstratal karstification of the soluble bedrock. The paleokarsts we analysed suggest that the sagging mechanism (not included in previous genetic classifications) plays an important role in the generation of sinkholes in evaporites. Moreover, collapse processes are more significant in extent and rate in areas underlain by evaporites than in carbonate karst, primarily due to the greater solubility of the evaporites and the lower mechanical strength and ductile rheology of gypsum and salt rocks.  相似文献   

5.
Mower County is in southeastern Minnesota in an area underlain by sedimentary bedrock. These rocks are karsted Middle Devonian and Middle Ordovician limestone and dolomite. The karst features of the county were inventoried. These features include sinkholes, disappearing streams, caves, dry valleys, and springs. Previous karst mapping efforts for other counties in Minnesota have produced sinkhole probability maps and a springshed map. In Mower County, we have developed a new type of karst map using a geographic information system (GIS) to produce a karst unit map. Karst units are discrete three-dimensional bodies in which solution of the bedrock has resulted in the integration of surface water and groundwater. The field mapping and hydrologic investigations were done with conventional methods. The karst unit delineation was done using GIS technology, which allowed us to examine the county's karst using two-dimensional and three-dimensional views. Many different overlays of the karst elements were combined to better understand the landscape dynamics. Ultimately, it was the overlay of the karst features, hydrologic information, and depth-to-bedrock mapping on a shaded relief landscape morphology map which allowed us to best delineate the individual karst units.  相似文献   

6.
Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

7.
The Meitanba Coal Mine area in Hunan province, China, had been impacted by severe cover collapse sinkholes since 1982 due to mine dewatering. After the coal mine was closed in February 2015, the groundwater level has increased significantly. A series of sinkholes were recorded in the study area during groundwater-level recovery. Analysis of monitoring results and in-situ investigation indicated that 13 sinkhole collapses were more likely induced by abrupt change of groundwater–air pressure in response to heavy rainfall from March 2015 to July 2016 when the groundwater level increased by as much as 76 m. When the karst conduit was flooded, a relatively sealed environment was formed between saturated sediments and flooded karst conduit. Implosion of entrapped air might have caused the cave roof to collapse followed by surface collapses in a short time. On the other hand, four sinkholes occurred in November 2016 when the groundwater levels were near the soil–bedrock interface at elevations between 52.5 and 58.9 m amsl and the groundwater-level increase was at slower paces. Field measurements indicate that the groundwater-level fluctuation at the soil–bedrock interface could enlarge the soil cavity and accelerate the subsoil erosion process.  相似文献   

8.
Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

9.
This paper presents the overall sinkhole distributions and conducts hypothesis tests of sinkhole distributions and sinkhole formation using data stored in the Karst Feature Database (KFD) of Minnesota. Nearest neighbor analysis (NNA) was extended to include different orders of NNA, different scales of concentrated zones of sinkholes, and directions to the nearest sinkholes. The statistical results, along with the sinkhole density distribution, indicate that sinkholes tend to form in highly concentrated zones instead of scattered individuals. The pattern changes from clustered to random to regular as the scale of the analysis decreases from 10–100 km2 to 5–30 km2 to 2–10 km2. Hypotheses that may explain this phenomenon are: (1) areas in the highly concentrated zones of sinkholes have similar geologic and topographical settings that favor sinkhole formation; (2) existing sinkholes change the hydraulic gradient in the surrounding area and increase the solution and erosional processes that eventually form more new sinkholes.  相似文献   

10.
 Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Because of the irregular distribution of pinnacles and cutters on the bedrock surface, uncertainties arise when "hit-or-miss" borehole drilling is used to locate potential collapse sites. A high-resolution geophysical technique capable of depicting the details of the bedrock surface is essential for guiding the drilling program. Dipole-dipole electrical resistivity tomography (ERT) was used to map the bedrock surface at a site in southern Indiana where limestone is covered by about 9 m of clayey soils. Forty-nine transects were conducted over an area of approximately 42,037 m2. The electrode spacing was 3 m. The length of the transects varied from 81 to 249 m. The tomographs were interpreted with the aid of soil borings. The repeatability of ERT was evaluated by comparing the rock surface elevations interpreted from pairs of transects where they crossed each other. The average difference was 2.4 m, with a maximum of 10 m. The discrepancy between interpreted bedrock-surface elevations for a transect intersection may be caused by variations in the subsurface geology normal to the transect. Averaging the elevation data interpreted from different transects improved the ERT results. A bedrock surface map was generated using only the averaged elevation data at the transect junctions. The accuracy of the map was further evaluated using data from four exploratory boreholes. The average difference between interpreted and actual bedrock surface-elevations was less than 0.4 m. The map shows two large troughs in the limestone surface: one coinciding with an existing sinkhole basin, while the other is in alignment with a small topographic valley. Because sinkholes were observed at the same elevation interval in similar valleys in the vicinity, the delineated trough may have implications for future land use at the site. Received: 4 January 1999 · Accepted: 8 March 1999  相似文献   

11.
Gularte  F. B.  Griffis  R. A.  Kasunich  J. E.  Best  T. C. 《Environmental Geology》1993,22(4):291-295
Sinkholes were discovered during initial construction of a new science building at the University of California, Santa Cruz campus. The occurrence of such classic karst features in California is typically uncommon, although sinkholes have frequently been encountered at the campus during previous construction projects. Subsequent to the sinkhole collapse, geologic and engineering investigations were conducted to determine the size and extent of the collapsed sinkholes and assess the potential for further failure. An exploratory compaction grouting program was developed and implemented in order to locate, fill, and plug voids and to densify loose soils beneath the structure. Eighty-one injection locations were drilled, totaling 1350 m (4429 ft), and 248.2 m3 (324.4 yd3) of low-slump grout was placed. Grout volumes and pressures were carefully monitored, and these data correlated well with lithology determined during grout pipe drilling. Permitted movement on the structure was kept well within the allowable 0.64 cm (0.25 in) using a combination of manometers and laser levels.  相似文献   

12.
The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5–2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region  相似文献   

13.
Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.  相似文献   

14.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

15.
An active sinkhole around 100 m long has been investigated in the city of Zaragoza (NE Spain). Subsidence activity on this depression, including the sudden occurrence of a collapse sinkhole 5 m across, led to the abandonment of a factory in the 1990s. At the present time, a building with 100 flats and shallow pad foundations partially built on the sinkhole, is affected by rapid differential settlement. The development of the sinkhole results from the karstification of the halite- and glauberite- bearing bedrock and the sagging and collapse of the overlying bedrock and alluvium, more than 30 m thick. GPR and electrical resistivity profiles have provided information on the distribution and geometry of the subsidence structure. The application of the trenching technique and geochronological methods (AMS and OSL dating) has allowed us to infer objective and practical data on the sinkhole including (1) Limits of the subsidence structure, (2) subsidence mechanisms, (3) cumulative subsidence (>408 cm), (4) subsidence rates on specific failure planes (>1.8 cm/year), (5) episodic displacement regime of some fault planes. The available information indicates that the progressive deformation recorded in the building will continue and might be punctuated by events of more rapid displacement. This work illustrates the practicality of the trenching technique for the study of sinkholes in mantled karst areas.  相似文献   

16.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   

17.
Models and mechanisms of drilling-induced sinkhole in China   总被引:3,自引:0,他引:3  
The present paper distinguishes the four general types of collapsed sinkholes induced by drilling in regions where non-indurated sediments (clay, silt, and sand) overlie unknown caves or open voids in underlying lithified karst rocks. These sinkhole models are classified into balance arch, hourglass, vibration, and subjacent drilling-induced erosion forms. A mechanical model was built for each type to assess the collapse probability. Drilling operations using boreholes facilitate rapid, turbulent, and erosive flow. These activities resulted in the 26 sinkholes that have been attributed to constructions in China in the last several years. Awareness of potential collapse conditions should allow construction projects to avoid high-risk settings that result in economic losses, environmental concerns, and life-threatening accidents caused by such rapid collapse of the land surface. Awareness and close monitoring of high-risk conditions during borehole monitoring should minimize the hazard.  相似文献   

18.
A preliminary sinkhole susceptibility analysis has been carried out in a stretch 50 km2 in area of the Ebro valley alluvial evaporite karst (NE Spain). A spatial database consisting of a sinkhole layer and 27 thematic layers related to causal factors was constructed and implemented in a GIS. Three types of sinkholes were differentiated on the basis of their markedly different morphometry and geomorphic distribution: large subsidence depressions (24), large collapse sinkholes (23), and small cover-collapse sinkholes (447). The susceptibility models were produced analysing the statistical relationships between the mapped sinkholes and a set of conditioning factors using the Favourability Functions approach. The statistical analyses indicate that the best models are obtained with 6 conditioning factors out of the 27 available ones and that different factors and processes are involved in the generation of each type of sinkhole. The validation of two models by means of a random-split strategy shows that reasonably good predictions on the spatial distribution of future dolines may be produced with this approach; around 75% of the sinkholes of the validation sample occur on the 10% of the pixels with the highest susceptibility and about 45% of the area can be considered as safe.  相似文献   

19.
A highly active collapse sinkhole field in the evaporitic mantled karst of the Ebro river valley is studied (NE Spain). The subsidence is controlled by a NW-SE trending joint system and accelerated by the discharge of waste water from a nearby industrial state. The morphometry, spatial distribution and temporal evolution of the sinkholes have been analysed. The volume of the sinkholes yields a minimum estimate of average lowering of the surface by collapse subsidence of 46 cm. The clustering of the sinkholes and the tendency to form elongated uvalas and linear belts, in a NW–SE direction have a predictive utility and allow the establishment of criteria for a hazard zonation. With the precipitation record supplied by a pluviograph and periodic cartographic and photographic surveys the influence of heavy rainfall events on the triggering of collapses has been studied.  相似文献   

20.
The morphological evolution of the karstic systems is associated with a set of physical and chemical processes, triggered by the dissolution of the rocks, related to percolation of groundwater and surface water, which consequently open underground voids and carve out peculiar forms of relief. Due to environmental and geotechnical aspects, this system is naturally more fragile and vulnerable than other natural systems and, therefore, has increasingly received the attention of the scientific community over the past decades. The objective of the study was to delimit zones with varying degrees of susceptibility for collapses and subsidence of sinkholes in the municipality of Iraquara, Chapada Diamantina (BA), Brazil, and to understand their geological and morphological determinant factors. Geological data, karst phenomenon map, and visual analysis in the field were used to categorize zones with different types of susceptibilities to the nucleation of new sinkholes based on a Hazard Index. This index was defined from the sum of geological hazard factors, lineament density, and sinkhole density. The areas that presented the highest susceptibility for terrain collapse and subsidence corresponded to regions where carbonate rocks outcrop, with high density of photolineaments and 2.62 sinkholes/km2. Processes associated with terrain collapse and subsidence in karst areas consisted of a combination of various factors, hindering precise predictions. However, zones of different types of susceptibilities to terrain collapse and subsidence can be delimited when the relationships between these processes and their factors are understood. The Hazard Index proposed does not provide quantitative values for the probability of hazard susceptibility, but rather indicates areas that are more susceptible to terrain subsidence and collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号