首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract Scapolite, wollastonite, calcite, diopside, grossular-andradite garnet and sphene occur in calc-silicate rocks in the granulite terrain of the Arunta Block, central Australia. This assemblage buffers the CO2 activity at a low value, so that any coexisting fluid phase must be H2O rich and CO2 poor ( X co2 = 0.2-0.3). In contrast, the H2O activity in the surrounding felsic and mafic granulites was low. Thus fluid activities during granulite facies metamorphism were locally buffered in various rock units and fluid flow appears to have been restricted or fluid may have been absent. Late retrograde rims of garnet and garnet-quartz separate phases formed in the high-grade stage. Formation of these rims would have required either an influx of water-rich fluid or a decrease in pressure. Evidence from the surrounding granulites shows that in one locality, the calc-silicate rocks had undergone late isobaric hydration; in another locality, minor uplift had occurred soon after peak P-T conditions. In both, scapolite had partly broken down to plagioclase-calite. A calc silicate rock from the granulite terrain of Enderby Land, Antarctica, contains scapolite, wollastonite, calcite, diopside, quartz and sphene; this assemblage also indicates low CO2 activities. In this rock, wollastonite has broken down to calcite-quartz, to indicate isobaric cooling without influx of hydrous fluid.  相似文献   

2.
High-density CO2-rich fluid inclusions from a sapphirine-bearing granulite (Hakurutale, Sri Lanka) have been studied by microthermometry, Raman spectrometry and SEM analysis. Based on textural evidence, two groups of inclusions can be identified: primary, negative crystal shaped inclusions (group I) and pseudo-secondary inclusions, which experienced a local, limited post-trapping modification (group II). Both groups contain magnesite as a daughter mineral, occurring in a relatively constant fluid/solid inclusion volume ratio (volsolid =0.15 total volume). CO2 densities for group I and II differ only slightly. Both groups contain a fluid, which was initially trapped at peak metamorphic conditions as a homogeneous (CO2+MgCO3) mixture. Thermodynamic calculations suggest that such a fluid (CO2+15 vol% MgCO3) is stable under granulite facies conditions. After trapping, magnesite separated upon cooling, while the remaining CO2 density suffered minor re-adjustments. A model isochore based on the integration of the magnesite molar volume in the CO2 fluid passes about 1.5–2 kbar below peak metamorphic conditions. This remaining discrepancy can be explained by the possible role of a small quantity of additional water.  相似文献   

3.
Abstract Nearly pure CO2 fluid inclusions are abundant in migmatites although H2O-rich fluids are predicted from the phase equilibria. Processes which may play a role in this observation include (1) the effects of decompression on melt, (2) generation of a CO2-bearing volatile phase by the reaction graphite + quartz + biotite + plagioclase = melt + orthopyroxene + CO2-rich vapour, (3) selective leakage of H2O from CO2+ H2O inclusions when the pressure in the inclusion exceeds the confining pressure during decompression, and (4) enrichment of grain-boundary vapour in CO2 by subsolidus retrograde hydration reactions.  相似文献   

4.
The equilibrium constant, K a, of the association reaction to form ion pairs from charged solute species in supercritical solutions can be calculated from a model based on published equations. Log K a at constant pressure is a linear function of the inverse in the dielectric constant of the fluid times temperature. The dielectric properties of H2O and CO2 at supercritical pressures and temperatures can also be evaluated using the Kirkwood equation. Using Looyenga mixing rules, the dielectric constant of H2O–CO2 mixtures can be obtained and the change in log K a with addition of CO2 in aqueous solutions evaluated. These changes in log K a with addition of CO2 are consistent with measured changes of log K a with addition of Ar in supercritical H2O–Ar solutions.
Log K a of KCl and NaCl increase to an increasing extent as the mole fraction of CO2 increases in H2O–CO2 solutions. For instance, at 2 kbar and constant temperature between 400 and 600° C, log K a of KCl increases by about two orders of magnitude whilst that of NaCl increases by over four orders of magnitude as the CO2 mole fraction increases from 0.0 to 0.35. Such changes in log K a will have dramatic effects on the solubility of minerals in CO2-rich environments.  相似文献   

5.
This work presents the results of a fluid inclusion study of an amphibolite-granulite facies transition in West Uusimaa, S.W. Finland. Early fluid-inclusions in the granulite facies area are characteristically carbonic (CO2), in contrast to predominantly aqueous early inclusions in the amphibolite facies area. These early inclusions can be related to peak metamorphic conditions (750-820°C and 3-5 kbar for peak granulite facies metamorphism). Relatively young CO2 inclusions with low densities (<0.8g/cm3) indicate that the first part of the cooling history of the rocks was characterized by a near isothermal uplift.
N2-CH4 inclusions, with compositions ranging between pure CH4 and pure N2 (Raman spectral analysis), were found in the whole area. They are probably syn- or even pre-early inclusions. Only nearly critical homogenizing inclusions have been found (low density). Pressure estimates, based on densities of early fluid inclusions, show that the rapid transition of amphibolite towards granulite facies metamorphism is virtually isobaric. Granulite facies metamorphism in West Uusimaa is a thermal event, probably induced by the influx of hot, CO2-bearing fluids.  相似文献   

6.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

7.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

8.
On the basis of fluid inclusion evidence, pervasive influx of deep-seated CO2-rich fluids has been invoked to account for mid- to upper amphibolite facies (M2B) metamorphism on the island of Naxos (Cyclades, Greece). In this paper, mineral devolatilization and melt equilibria are used to constrain the composition of both syn- and post-peak-M2B fluids in the deepest exposed levels of the metamorphic complex. The results indicate that peak-M2B fluids were spatially and compositionally heterogeneous throughout the high-grade core of the complex, whereas post-peak-M2B fluids were generally water-rich. The observed heterogeneities in syn-M2B fluid composition are inconsistent with pervasive CO2-flushing models invoked by previous workers on the basis of fluid inclusion evidence. It is likely that few CO2-rich fluid inclusions on Naxos preserve fluids trapped under peak metamorphic conditions. It is suggested that many of these inclusions have behaved as chemically open systems during the intense deformation that accompanied the uplift of the metamorphic complex. A similar process may explain the occurrence of some CO2-rich fluid inclusions in granulite facies rocks.  相似文献   

9.
Abstract Three types of mineral associations are described from calc-silicate granulites from the Eastern Ghats, India, where geothermobarometry in associated rocks suggests extremely high P–T conditions of metamorphism ( c . 9 ± 1 kbar, 950° C). These mineral associations are: (i) calcite + quartz + scapolite + plagioclase, (ii) calcite + scapolite + wollastonite + porphyroblastic garnet + coronal garnet and (iii) calcite + quartz + wollastonite + scapolite + porphyroblastic garnet + coronal garnet, all coexisting with K-feldspar, titanite and clinopyroxene. The first two associations evolved through nearly isobaric cooling retrograde paths, whereas the third evolved through a nearly isothermal decompression path followed by an isobaric cooling retrograde path. Textural and compositional characteristics suggest the following mineral reactions in the calc-silicate granulites: calcite + quartz = wollastonite + CO2, calcite + plagioclase = scapolite, calcite + scapolite + wollastonite = porphyroblastic garnet ± quartz + CO2, CaTs + wollastonite = coronal garnet (association ii) and wollastonite + scapolite = coronal garnet (association iii) + quartz + CO2. Andradite content in garnet was buffered by the redox equilibria wollastonite + hedenbergite + O2= andradite + quartz (association iii) and wollastonite + andradite + CaTs + scapolite = hedenbergite + calcite + grossular + O2 (association ii). The contrasting mineral parageneses have been ascribed to interplay of variables such as X CO2, f O2, f HCl in the fluid, bulk Na content and the nature of the retrograde P–T–X CO2 paths through which the rocks evolved.  相似文献   

10.
We present an approach for tracing the fate of anthropogenic CO2, compiling a large data set of stable organic carbon isotope ratios from surface sediments, plankton, and sinking matter in the Atlantic Ocean. The δ13C values of sinking matter are generally lower by 0.5–4.6‰ compared to the surface sediments. This difference increases with increasing latitude, which is explained by a stronger modern increase in surface water [CO2 (aq)] in the Southern Ocean relative to the Tropical/Subtropical Ocean. Preindustrial dissolved CO2 concentrations in Atlantic surface waters, estimated from the δ13Corg of surface sediments, are compared to recently measured surface water [CO2 (aq)] values taken from literature. We obtain only a slight increase in [CO2 (aq)] at lower latitudes but a significant change of about 7 ± 2 μ m in high latitudinal surface waters which we attribute to anthropogenic perturbation. Our results suggest that CO2 released by human activities has been stored in Southern Ocean surface waters.  相似文献   

11.
Abstract. This study examined the effect of CO2 on NaCl solubility in hydrothermal fluid, with the synthetic fluid inclusion technique. Fluid inclusions of 30–40 wt% NaCl and 5 mol % CO2 were synthesized, and their halite dissolution temperatures, Tm(halite), were measured. The solubilities of NaCl in CO2-bearing aqueous fluid were obtained at 160–320C under vapor-saturated pressures. The Tm(halite) value in aqueous fluid with 5 mol % CO2 obtained in this study agrees with that of Schmidt et al. (1995), showing that 5 mol % CO2 reduces the solubility of NaCl by about 1 wt%.
Calculation of magnetite solubility suggests that 5–10 mol % CO2 decreases magnetite solubility by 4.5–8.9 % relative to the magnetite solubility in CO2-free solution. Therefore, an increase of CO2 content in ore-forming solutions may cause deposition of iron minerals and produce ore deposits.  相似文献   

12.
Refinements have been made to achieve over 99% yield in the conversion of CO to CO2 in order to improve the reproducibility and accuracy of δ18 O measurements in sulfates. BaSO4 (10-15 mg) was mixed with an identical amount of spectrographic-grade graphite and loaded into a Pt boat. The mixture was gradually heated to 1100 °C to reduce sulfate to CO and CO2; the former gas was simultaneously converted to CO2 by a glow discharge between Pt electrodes immersed in a magnetic field (produced by a pair of external neodymium magnets). A small memory effect was noticed during the analysis (less than 0.3‰ per 10‰ difference in δ18 O between two subsequently analysed samples). The memory effect, however, was suppressed by repetitive preparation of the same specimen. CO2 produced in this way from sulfate reference samples was analysed on a dual inlet and triple collector mass spectrometer along with CO2 equilibrated with VSMOW, GISP and SLAP water reference samples. To avoid large departures of measured isotope ratios from 18O/16O of the working calibrator we used CO2 gas prepared from ocean water sulfate for this purpose. The calibrated δ18 O values (in ‰) obtained in this way for NBS-127, IAEA SO-5 and IAEA SO-6 reference materials were 8.73 ± 0.05, 12.20 ± 0.07 and -10.43 ± 0.12, respectively.  相似文献   

13.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

14.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤  X (CO2) ≤ 0.10 and X (CO2) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2) values, which favoured relatively high f O2-conditions, preventing the formation of diamond at the UHP peak metamorphic conditions.  相似文献   

15.
Abstract Fluids, some of which are CO2-rich (up to 40 mol.% CO2) and some of which are highly saline (up to 18 wt% NaCl equivalent), are trapped as fluid inclusions in quartz-calcite (∼ metallic minerals) veins which cross-cut the pumpellyite-actinolite to amphibolite facies rocks of the Alpine Schist. Fluids were commonly trapped as immiscible liquid-vapour mixes in quartz and calcite showing open-space growth textures. Fluid entrapment occurred at fluid pressures near 500 bars (possibly as low as 150 bars) at temperatures ranging from 260 to 330° C. Saline fluids may have formed by partitioning of dissolved salts into an aqueous phase on segregation of immiscible fluids from a low-density CO2-rich fluid. Calcite deposited by these fluids has δ13C ranging from – 8.4 to – 11.5 and δ18O from + 4 to + 13. Isotopic data, fluid compositions and mode of occurrence suggest that the fluids are derived from high-grade metamorphic rocks. Fluid interaction with wall-rock has caused biotite crystallization and/or recrystallization in some rocks and retrogression of biotite to chlorite in other rocks.
Fluid penetration through the rock is almost pervasive in many areas where permeability, probably related to Alpine Fault activity, has focussed fluids on a regional scale into fractured rocks. The fluid flow process is made possible by high uplift-rates (in excess of 10 mm/year) bringing hot rocks near to the surface.  相似文献   

16.
Abstract: The physical and chemical mechanism of gold precipitation in the typical low-sulfidation epithermal gold deposit at the Hishikari mine was quantified by submillimeter scale oxygen isotope analyses of vein quartz. In situ CO2 laser-ablated fluorination was used to measure temporal δ18O excursions. The calculated oxygen isotopic compositions of the ore-forming fluid indicate a dynamic process of epithermal vein formation. Intermittent opening of the vein allowed introduction of metal-bearing deep fluid to the epithermal system, and associated boiling and subsequent mixing with meteoric water caused precipitation of precious metals.  相似文献   

17.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

18.
Carbon sources in arc volcanism, with implications for the carbon cycle   总被引:1,自引:0,他引:1  
New CO2/3 He data from the East Sunda Arc (Indonesia) confirm earlier observations that arc volcanic gases have higher CO2/3 He ratios than MOR environments.On average, > 80% of arc volcanic CO2 is recycled, exogene carbon. Addition of a few percent of carbonate-bearing sediments to the mantle wedge explains much of the carbon abundance andcarbon isotopic data of arc gases, but can not explain the He isotope observations. The CO2/3He in arc volcanoes is not strongly dependent on the composition of modem trough sediments (e.g. deep sea clays vs carbonate-rich sequences), and calcite veins in the hydrothermally altered subducted slab may provide a contribution to the recycled carbon flux of, arcs. The sum of globally deep-subducted sediment and slab carbon exceeds the estimated arc CO2 flux, and approximately 3.5 teramole of carbon may return annually to the mantle in convergent zones. The modem combined processes of MOR volcanism, slab alteration, and subduction volcanism do not produce a substantial carbon flux into the exosphere, and rate-changes in ocean floor spreading are unlikely to cause major changes in atmospheric CO2 as a result of changes in the volcanic CO2 fluxes. Intense pulses of flood basalt volcanism, however, may alter the CO2 contents of the atmosphere over the course of a millenium or so, and influence global climate.  相似文献   

19.
Abstract Late Archaean orthogneisses and aluminous and iron-rich metasedimentary rocks intruded by anorthosite and a ferrodiorite-granite suite were completely recrystallized during Proterozoic granulite facies metamorphism. Geobarometry and geothermometry indicate P-T conditions of around 7.5kbar. 700°C, with a CO2-rich fluid phase and logfO2 at or below -16. A two-stage high-grade history of near isochemical corona growth is preserved in metasediments with the reaction cycle opx + plag + H2O → hbl+gar+SiO2→ opx+plag+H2O. End product compositions resemble those of the initial phases, and the only mobile components were SiO2 and/or H2O. The coronas reflect shortlived fluctuations in chemical activity at essentially constant P and T, contrary to simple progressive change in equilibrium parameters recorded by most corona-bearing textures.  相似文献   

20.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号