首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.  相似文献   

2.
《Tectonophysics》1987,142(1):71-85
Analysis of data gathered during the 1983 European Geotraverse southern segment (EGT-S '83) experiments in the region extending from the Emilia-Liguria Apennines to the western Alpine Arc together with data from seismic profiles in the northwestern Apennines accumulated within the framework of the Alps-Apennines Orogene Study Group indicate new details on the structure of the upper crust east and west of the Alps-Apennines boundary.The main results of this analysis centre on two areas. In the Piedmont Tertiary Basin we could determine the depocenter configurations of the 6–7 km thick terrigenous sequence and differentiate the tectonic units in the Piedmont (Alpine) and the Ligurian (Apennine) domains within the basement. In the other area, the Insubric domain underneath the Ligurian nappes of the northern Apennines, we found indications of tectonic doubling within the terrigenous-carbonate sequence in which thrusting attenuates towards the underlying basement, detected at a depth of 12–15 km. In addition, we found that, on a line from the Emilia Apennines to the Monferrato Hills, displacement of the Ligurian nappes over the Insubric domain diminishes to nearly one-third its original extent.  相似文献   

3.
F. Piana  R. Polino 《地学学报》1995,7(2):138-143
The relationship between the Alpine and Apenninic orogenic systems is concealed at the surface by Tertiary sediments of two main tectono-stratigraphic units: the 'Alpine-related' Torino Hill domain and the 'Apennines-related' Monferrato domain. Mapping and structural analyses carried out in the area behind the Mio-Pliocene Apenninic-Padane thrust front allow comparison of the kinematic history of the Torino Hill and Monferrato domains. These are separate by the transpressive Tlio Freddo Deformation Zone' (RFDZ), interpreted here as the superficial expression of a crustal discontinuity along which the Alpine metamorphic basement overrode the Apenninic Ligurian nappes during the Palaeogene.
The Western Monferrato structural setting is the result of: (i) Late Oligocene-Burdigalian transpressive tectonics due to lateral displacement between the Alps-related and the Apennines-related domains; and (ii) compressive post-Messinian tectonics related to northward transport along the main Padane thrust front. Post-Messinian tectonic events affected also the NW-vergent asymmetrical Torino Hill anticline.  相似文献   

4.
The Northern Apennines of Italy is a fold and thrust belt that resulted from the NE‐ward progressive overthrusting of a Mesoalpine stacking (the ocean‐derived Ligurian Units) onto the detached sedimentary cover of the Adria plate continental margin (Foredeep Units). The Futa Pass area represents a key sector for the reconstruction of the deformation history of two Foredeep Units (Acquerino and Carigiola Units). The tectonic evolution of this sector is characterized by the superposition of three main deformation stages, with a constant NNE–SSW compression direction. The oldest structure is represented by the NNE‐verging Acquerino Unit duplex structure, the roof thrust of which is represented by the Ligurian stacking basal thrust. The interpretation of this structure as a large‐scale duplex is supported by the presence in the outer sectors of the Northern Apennines belt of Ligurian Units directly overthrust on younger Foredeep Units. In the second deformation stage the NNE‐verging Tavaiano Thrust developed. This regionally significant tectonic surface juxtaposes the Acquerino Unit (already developed as a duplex) and the overlying Ligurian Units, onto the Carigiola Unit. During this stage the fault pattern of the Carigiola Unit was also developed, characterized by two conjugate fault systems, coherent with a NNE–SSW maximum compression direction. During the last deformation stage, a backthrusting with a top‐to‐the SSW sense of movement (the Marcoiano Backthrust) brings the Carigiola Unit and its tectonic cover over the Acquerino and Ligurian Units, with the development of a large footwall syncline. The deformation history presented here differs from previous studies, and so provides a contribution to the debate on Northern Apennines tectonic evolution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
New structural and stratigraphic data for a selected area of the Ligurian Alps are combined in order to assess and discuss the role played by extensional structures in the southernmost segment of the Western Alps during thrusting. Restored cross-sections and field data suggest that the structural style in the external sector of the chain may depend upon the presence of pre-orogenic normal faults ascribed to three extensional events linked to different geodynamic contexts: (i) Permian post-Variscan plate reorganisation, (ii) Mesozoic rifting–drifting phases leading to the opening of the Alpine Tethys, and (iii) Eocenic development of the European foreland basins. During positive inversion in Eocene times, a thin-skinned thrust system developed in this area, followed by a thick-skinned phase. In both situations the inherited extensional structures played fundamental roles: during the thin-skinned phase they conditioned the thrusting sequence, also producing large-scale buckle folds and partial reactivations; during the thick-skinned phase the strain was compartmentalized and partitioned by pre-existing faults.The kinematic model of the external sectors of the Ligurian chain also allows the re-assessment of the Alpine evolution of the front-foreland transition, including: (i) indirect confirmation that in the Eocene the Ligurian Briançonnais and Dauphinois domains were not separated by the Valais-Pyrenean oceanic basin; (ii) that the thin-skinned phase progressively changed into thick-skinned; (iii) the assertion that there were no significant deformations from the Oligocene to the present-day, and the Corsica–Sardinia block rotation only produced a change in orientation of previously formed structures and normal fault system development.  相似文献   

6.
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north–south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23–21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north–south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.  相似文献   

7.
Polydeformed and metamorphosed Neoproterozoic rocks of the East African Orogen in the Negele area constituted three lithostructurally distinct and thrust-bounded terranes. These are, from west to east, the Kenticha, Alghe and Bulbul terranes. The Kenticha and Bulbul terranes are metavolcano-sedimentary and ultramafic sequences, representing parts of the Arabian-Nubian Shield (ANS), which are welded to the central Alghe gneissic terrane of the Mozambique Belt affinity along N-S-trending sheared thrust contacts. Structural data suggest that the Negele basement had evolved through three phases of deformation. During D1 (folding) deformation, north-south upright and inclined folds with north-trending axes were developed. East and west-verging thrusts, right-lateral shearing along the north-oriented Kenticha and Bulbul thrust contacts and related structural elements were developed during D2 (thrusting) deformation. The pervasive D1 event is interpreted to have occurred at 620-610 Ma and the D2 event ended prior to 554 Ma. Right-lateral strike-slips along thrust contacts are interpreted to have been initiated during late D2. During D3, left-lateral strike-slip along the Wadera Shear Zone and respective strike-slip movements along conjugate set of shear zones were developed in the Alghe terrane, and are interpreted to have occurred later than 557 Ma. The structural data suggest that eastward thrusting of the Kenticha and westward tectonic transport of the Bulbul sequences over the Alghe gneissic terrane of the Mozambique Belt, during D2, were accompanied by right-lateral strike-slip displacements along thrust contacts. Right-lateral strike-slip movements along the Kenticha thrust contact, further suggest northward movement of the Kenticha sequence during the Pan-African orogeny in the Neoproterozoic. Left-lateral strike-slip along the orogen-parallel NNE-SSW Wadera Shear Zone and strike-slip movements along a conjugate set of shear zones completed final terrane amalgamation between the Arabian-Nubian Shield and the Mozambique Belt in Neoproterozoic southern Ethiopia.  相似文献   

8.
A series of 8 new seismic refraction profiles were computed as extensions of the borehole controlled reflection profiles of the Po plain into the northern Apennines and the Ligurian Alps. They help to more clearly define the subsurface structure of this intricate ‘Ligurian knot’. In particular, it has been possible to identify a number of high velocity bodies, and they may be correlated with such geological entities as the Adriatic Mesozoic, ophiolites of the Apenninic Liguride nappes, and ophiolites or Mesozoic carbonates underlying the Antola flysch in the Alpine part of the knot. When combining the refraction and reflection lines, these bodies appear to be bounded by important dislocation surfaces, such as the Padanide sole thrust (Plio-Pleistocene), the Villalvernia Varzi line (Oligo-Miocene), the Ottone-Levanto line (Oligo-Miocene), and the Volpedo-Valle Salimbene fault (Oligo-Miocene; reactivated as a transfer fault in the Plio-Pleistocene). The 3D geometry may be interpreted in terms of regional kinematics and is compatible with a model that envisages an Oligo-Early Miocene NW translation of the Adriatic indenter, coupled with collapse in the Provençal-Ligurian sea and rotation of the Sardinia-Liguria complex into the roll-back of the Adriatic subduction zone. The refraction interpretations, extending to a depth of 15 km, are supplemented by data on the Moho configuration obtained for the European Geotraverse. The Moho appears to be dissected into a series of patches which may be interpreted in terms of the shallow crustal configuration and its history. In particular, the deepest patch appears to be terminated by the Volpedo-Valle Salimbene fault, which consequently would displace the entire crust.  相似文献   

9.
《Earth》1999,45(3-4):167-208
Subduction zones appear primarily controlled by the polarity of their direction, i.e., W-directed or E- to NNE-directed, probably due to the westward drift of the lithosphere relative to the asthenosphere. The decollement planes behave differently in the two end-members. In the W-directed subduction zone, the decollement of the plate to the east is warped and subducted, whereas in the E- to NNE-directed, it is ramping upward at the surface. There are W-directed subduction zones that work also in absence of active convergence like the Carpathians or the Apennines. W-directed subduction zones have shorter life (30–40 Ma) than E- or NE-directed subduction zones (even longer than 100 Ma). The different decollements in the two end-members of subduction should control different PTt paths and, therefore, generate variable metamorphic assemblages in the associated accretionary wedges and orogens. These asymmetries also determine different topographic and structural evolutions that are marked by low topography and a fast `eastward' migrating structural wave along W-directed subduction zones, whereas the topography and the structure are rapidly growing upward and expanding laterally along the opposite subduction zones. The magmatic pair calc-alkaline and alkaline–tholeiitic volcanic products of the island arc and the back-arc basin characterise the W-directed subduction zones. Magmatic rocks associated with E- or NE-directed subduction zones have higher abundances of incompatible elements, and mainly consist of calc-alkaline–shoshonitic suites, with large volumes of batholithic intrusions and porphyry copper ore deposits. The subduction zones surrounding the Adriatic plate in the central Mediterranean confirm the differences among subduction zones as primarily controlled by the geographic polarity of the main direction of the slab. The western margin of the Adriatic plate contemporaneously overridden and underthrust Europe toward the `west' to generate, respectively, the Alps and the Apennines, while the eastern margin subducted under the Dinarides–Hellenides. These belts confirm the characters of the end-members of subduction zones as a function of their geographic polarity similarly to the Pacific subduction zones.  相似文献   

10.
《Tectonophysics》1987,142(1):87-98
Four nappes have been recognized in the Ligurian Apennines. In the Lavagna Nappe very low-grade metamorphism is combined with very large, originally W-facing isoclinal folds. In the other nappes, no evidence for metamorphism is found and all eutectonic folding was originally E- to NE-facing. Tectonic transport along the major nappe contacts was in an E- to NE-direction. A tectonic model is presented, which explains the generation of the large, originally W-facing folds as a result of originally E-inclined subduction within a young oceanic basin. Young oceanic lithosphere (maximum age approximately 25 Ma) subducted beneath oceanic lithosphere with a maximum age of approximately 40 Ma, under the influence of horizontally oriented compressional forces. Within the tectonic wedge, associated with the subduction, originally W-facing isoclinal folding and metamorphism occurred. Decrease and/or termination of compression resulted in the cessation of the subduction movements, followed by uplift of the region above the subducted plate by means of buoyancy. This uplift formed a slope from which sequences slid in an E- to NE-direction, causing E- to NE-facing folds. Ultimately, detachment and thrusting of gravitational nappes took place, by which process rock sequences of oceanic origin have been externally transported to attain ensialic (continental) domains. The Triassic-Early Oligocene tectonic events recognized in the Ligurian Apennines correlate quite well with the events that preceded the collision phase of the Alps.  相似文献   

11.
The Western Alps’ active tectonics is characterized by ongoing widespread extension in the highest parts of the belt and transpressive/compressive tectonics along its borders. We examine these contrasting tectonic regimes using a multidisciplinary approach including seismotectonics, numerical modeling, GPS, morphotectonics, fieldwork, and brittle deformation analysis. Extension appears to be the dominant process in the present-day tectonic activity in the Western Alps, affecting its internal areas all along the arc. Shortening, in contrast, is limited to small areas located along at the outer borders of the chain. Strike-slip is observed throughout the Alpine realm and in the foreland. The stress-orientation pattern is radial for σ3 in the inner, extensional zones, and for σ1 in the outer, transcurrent/tranpressional ones. Extensional areas can be correlated with the parts of the belt with the thickest crust. Quantification of seismic strain in tectonically homogeneous areas shows that only 10–20% of the geodesy-documented deformation can be explained by the Alpine seismicity. We propose that, Alpine active tectonics are ruled by isostasy/buoyancy forces rather than the ongoing shortening along the Alpine Europe/Adria collision zone. This interpretation is corroborated by numerical modeling. The Neogene extensional structures in the Alps formed under increasingly brittle conditions. A synthesis of paleostress tensors for the internal parts of the West-Alpine Arc documents major orogen-parallel extension with a continuous change in σ3 directions from ENE–WSW in the Simplon area, to N–S in the Vanoise area and to NNW–SSE in the Briançon area. Minor orogen-perpendicular extension increases from N to S. This second signal correlates with the present-day geodynamics as revealed by focal-plane mechanisms analysis. The orogen-parallel extension could be related to the opening of the Ligurian Sea during the Early-Middle Miocene and to compression/rotation of the Adriatic indenter inducing lateral extrusion.  相似文献   

12.
Adria,the African promontory,in mesozoic Mediterranean palaeogeography   总被引:1,自引:0,他引:1  
The orogenic belts encircling the present-day Adriatic Sea are the deformed Mesozoic continental margin of an area known as Adria, the outline of which began to take shape during Middle Triassic continental rifting. Early Jurassic oceanic rifting was usually close to, but not coincident with, sites of earlier continental rifting. The Triassic rifted zones were usually incorporated into the continental margin of Adria, profoundly influencing its subsequent development. The Mesozoic platform/basin morphology of this margin can be correlated along the length of the belt.Palaeomagnetic data from autochthonous outcrops of the foreland of Adria do not indicate relative rotation and moreover suggest that this foreland has moved in coordination with Africa since the Early Mesozoic. Seismic soundings indicate that thick Mesozoic sedimentary sequences which can be correlated with sections on the African platform are continuous beneath the eastern Mediterranean seas. The concept of Adria as having behaved as a promontory of the African plate is tested by correlation of the main tectonic events in the belt with the spreading history of the Atlantic. The simplest model which adequately accounts for available data comprises a continuous Mesozoic continental margin from the Magrebids of Tunisia, through the Apennines, Alps, Dinarides and Hellenides to the alpine belt of Turkey. This margin was the southern margin of the Mesozoic Tethys and its foreland was more or less continuous with the African platform. Some structural and geochemical features of the double ophiolitic belt on the eastern side of Adria may be explained in terms of more external oceanic branches giving a more diversified continental margin of Adria. The present undulations of the Periadriatic belt are mainly a product of Late Cretaceous to recent deformation, which severely modified the shape of this margin by continental collision and by subsequent development of back-arc features.  相似文献   

13.
The study of clast composition carried out on the alluvial gravels of the Romagna Apennines of northern Italy has provided evidence for an extensive covering of allochthonous units (Ligurian nappe and Epiligurian succession) above the Miocene foredeep deposits (Marnoso‐Arenacea Formation), which has been subsequently eroded during the Late Miocene–Pleistocene uplift. This result is confirmed by the burial history outlined in the Marnoso‐Arenacea Formation through vitrinite reflectance and apatite fission‐track analyses. The Romagna Apennines represent, therefore, a regional tectonic window where the thrust system that displaced the Marnoso‐Arenacea Formation crops out. The geometric relations between this thrust system and the basal thrust of the Ligurian nappe, exposed at the boundaries of the Romagna Apennines (Sillaro Zone and Val Marecchia klippe), are consistent with a duplex structure. Thus, the Romagna Apennines thrust system is an eroded duplex. The duplex roof‐thrust corresponds to the surface of the synsedimentary overthrust of the Ligurian nappe on the Marnoso‐Arenacea Formation; the floor‐thrust is located in the pelagic pre‐foredeep deposits (Schlier Formation). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The Umbria-Marche fold-and-thrust belt (Northern Apennines, Italy), provides excellent opportunities to evaluate the structural heritage of the opening of the Mesozoic Tethys Ocean in the 3D geometry of the Neogene compressional structures related to the Alpine Orogeny. The structure and evolution of a portion of the southernmost belt, between the Nera River and the Rieti Basin, are described as a field example, and the kinematics along well-exposed Mesozoic extension structures are provided. Cross-section restoration shows a close coincidence between these extension structures and the Neogene thrust ramps, thus suggesting that the geometry of the latter was controlled by the map distribution of the former. Sequential balancing also allows for the definition of the geometrical pattern of pre-existing normal faults, which were produced in response to a unidirectional or a two-directional extension stress field. The inferred direction of principal extension, corrected for the effects of late deformation, is consistent with that proposed for the northern margin of the Adria Promontory in global-scale plate tectonic reconstructions.  相似文献   

15.
H. Laubscher 《地学学报》1990,2(6):645-652
Gravity surveys of the past century established that mountains have roots, seismic refraction lines shot in the second half of this century confirmed the downbulge of the Moho under the Alps, and recent reflection traverses provided new details on the behaviour of crustal layers in the deep part of the Alps. However, geophysical data are ambiguous geologically. For models of the root in terms of rock distribution to be tectonophysically acceptable, they must be the retrodeformable result of kinematic sequence that fits the geological surface data. For a cross-section through the Swiss Alps based on refraction data and somewhat modified by the recent reflection traverses, a kinematic model compatible with large-scale geological data may be obtained by the superposition of three Neogene phases with alternating vergence. Although Alpine collision is largely dextrally compressive in the central Alps, the N-S component may be discussed in a cross-section. Particularly puzzling geophysical features include a high-velocity body in the middle crust and the disappearance of the layered foreland crust in the root. In order to account for these phenomena, it is proposed that the crustal root is interpreted as the result of complex reshuffling of middle and lower crustal masses as well as large-scale phase transformations. The mid-crustal highvelocity body is interpreted as a delaminated section of the lower crust of the Adria plate that was wedged into the middle crust of the Alps in the middle Miocene. The disappearance of the foreland lower crust is attributed to eclogitization attendant on the subduction of continental crust. Material balance estimates suggest that during Alpine collision large volumes of continental crust have disappeared through subduction.  相似文献   

16.
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The Valais units in Savoy (Zone des Brèches de Tarentaise) have been re-mapped in great detail and are subject of combined stratigraphic, structural and petrological investigations summarized in this contribution. The sediments and rare relics of basement, together with Cretaceous age mafic and ultramafic rocks of the Valais palaeogeographical domain, represent the heavily deformed relics of the former distal European margin (External Valais units) and an ocean–continent transition (Internal Valais unit or Versoyen unit) that formed during rifting. This rifting led to the opening of the Valais ocean, a northern branch of the Alpine Tethys. Post-rift sediments referred to as “Valais trilogy” stratigraphically overlie both External and Internal Valais successions above an angular unconformity formed in Barremian to Aptian times, providing robust evidence for the timing of the opening of the Valais ocean. The Valais units in Savoy are part of a second and more external mid-Eocene high-pressure belt in the Alps that sutured the Briançonnais microcontinent to Europe. Top-N D1-deformation led to the formation of a nappe stack that emplaced the largely eclogite-facies Internal Valais unit (Versoyen) onto blueschist-facies External Valais units. The latter originally consisted of, from internal to external, the Petit St. Bernard unit, the Roc de l’Enfer unit, the Moûtiers unit and the Quermoz unit. Ongoing top-N D2-thrusting and folding substantially modified this nappe stack. Post 35 Ma D3 folding led to relatively minor modifications of the nappe stack within the Valais units but was associated with substantial top-WNW thrusting of the Valais units over the Dauphinois units along the Roselend thrust during W-directed indentation of the Adria block contributing to the formation of the arc of the Western Alps.  相似文献   

18.
The Northern Calcareous Alps (NCA) of southern Bavaria and northern Tyrol constitute a carbonate-dominated polyphase fold-thrust wedge; together with its Grauwacken Zone Basement, it is the northernmost part of the far-travelled Upper Austroalpine thrust complex of the Eastern Alps. The present geometry developed in several kinematic stages. Jurassic extensional faults that affected large parts of the NCA and their basement originated when the main part of the NCA was still located southeast of the Central Alpine Ötztal-Silvretta complex. These faults and related facies transitions influenced the later style of detachment of the NCA thrust sheets. Mid to Late Cretaceous detachment, thrust-sheet stacking and motion over the Central Alpine complex are registered in clastic deposits of syntectonic basins. The latest Cretaceous to Cenozoic NNE- to N-directed motion of the NCA towards Europe in front of the Central Alpine complex created another set of significant contraction structures, which at depth overprinted all previous structures. During Cretaceous to Cenozoic deformation, the NCA experienced about 80 km of shortening, i.e., about 73% along the TRANSALP Profile. The European basement and autochthonous Mesozoic cover beneath the allochthonous NCA thrust sheets and flysch complexes seem to have remained relatively undeformed.  相似文献   

19.
《Geodinamica Acta》2013,26(1-2):71-97
Most of the tectonic units cropping out in Western Tuscany are fragments of the Jurassic oceanic crust, ophiolitic successions, overlaid diachronously by Upper Cretaceous-middle Eocene carbonate and siliciclastic flysch successions with their Cenomanian-lower Eocene shalycalcareous basal complexes. These units, so called Ligurian, have been emplaced during the closure of the Ligurian-Piedmont Ocean. Ophiolite bearing debris flows are common in the flysch basins and their relationship with ophiolitic tectonic slices points to a strong relation between tectonics and sedimentation from the early compressive events of the Late Cretaceous. The tectonic activity reflects in a rough morphology of the ocean floor. It progressively influences the distribution and sedimentology of the turbidites. During middle Eocene this relationship begun very important and a paleogeographic reconstruction with prominent linear ophiolitic reliefs that bounded some turbiditic basins can be done. In our reconstruction the sedimentary and structural evolution can be framed in the context of strain partitioning, developed during the ocean closure, between subduction processes and ancient weakness zones crosscutting both the ocean and the Adria continental margin and reactivated in compressive regime. These weakness zones can be interpreted as transform faults of the Ligurian-Piedmont Ocean with prolongations in the Adria passive margin.

The weakness zones crosscut the oceanic lithosphere and the Adria continental margin and interfered with the subduction processes. The activity of the weakness zones is reflected in the Ligurian Units architecture where two main structural strike trends of thrusts and folds axial planes occur. The first trend is WSW-ENE oriented and it is connected with the reactivation of the weaknesses zones. This first orientation developed progressively from Late Cretaceous to Pliocene, from oceanic to ensialic convergence (D1, D2, and D4 deformation phases). The second trend is NNE-SSW oriented and is related to the late Eocene continental collision and the subsequent translation to the NE of the oceanic units onto the Adria continental margin (D3 deformation phase).  相似文献   

20.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号