首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GUOQI HAN 《Marine Geodesy》2013,36(3-4):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002–2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ~55 cm/s and the normalized relative vorticity is ~0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

2.
A time series of velocity profile in the upper 150 m of the equatorial Atlantic was gathered at 23W in 2002 within the PIRATA program. It constitutes the first time series of near surface current measurements simultaneous with altimetric data in the equatorial Atlantic. The surface slope anomaly along the equator is computed from satellite altimetry, and, as a proxy for the pressure gradient along the equator, compared with the wind and near surface current data. In a first step, a time series of the surface slope anomaly along the equator in the Atlantic is computed from the 10-year-long TOPEX/Poseidon sea level anomalies. A sensitivity study establishes the robustness of the calculation. Apart from a 15 cm bias, the equatorial sea surface slope anomalies estimated either from TOPEX/Poseidon or from Jason over the 6-month overlap (Feb.-Aug. 2002) do not reveal drastic differences. We produce two sea surface slope anomaly composite time series for 2002 (one with T/P data, the other with Jason data during the commissioning phase) and compare them to the wind and velocity data at 23W. As expected, the near surface velocity and depth of the upper limit of the equatorial undercurrent (EUC) are extremely well correlated with the surface pressure gradient anomaly. 10-year-long time series of altimetry-derived zonal sea surface slope anomaly and ECMWF ERA40 wind stress are also well correlated. They exhibit similar spectral content and similar anomalous years. This is a first step towards a full analysis of the EUC dynamics using altimetry, PIRATA data (near surface current and subsurface thermohaline structure) and model. These initial comparisons reinforce the utility of Jason measurements for continuing the 10-year and highly accurate TOPEX/Poseidon time series for study of equatorial signals.  相似文献   

3.
A time series of velocity profile in the upper 150 m of the equatorial Atlantic was gathered at 23W in 2002 within the PIRATA program. It constitutes the first time series of near surface current measurements simultaneous with altimetric data in the equatorial Atlantic. The surface slope anomaly along the equator is computed from satellite altimetry, and, as a proxy for the pressure gradient along the equator, compared with the wind and near surface current data. In a first step, a time series of the surface slope anomaly along the equator in the Atlantic is computed from the 10-year-long TOPEX/Poseidon sea level anomalies. A sensitivity study establishes the robustness of the calculation. Apart from a 15 cm bias, the equatorial sea surface slope anomalies estimated either from TOPEX/Poseidon or from Jason over the 6-month overlap (Feb.–Aug. 2002) do not reveal drastic differences. We produce two sea surface slope anomaly composite time series for 2002 (one with T/P data, the other with Jason data during the commissioning phase) and compare them to the wind and velocity data at 23W. As expected, the near surface velocity and depth of the upper limit of the equatorial undercurrent (EUC) are extremely well correlated with the surface pressure gradient anomaly. 10-year-long time series of altimetry-derived zonal sea surface slope anomaly and ECMWF ERA40 wind stress are also well correlated. They exhibit similar spectral content and similar anomalous years. This is a first step towards a full analysis of the EUC dynamics using altimetry, PIRATA data (near surface current and subsurface thermohaline structure) and model. These initial comparisons reinforce the utility of Jason measurements for continuing the 10-year and highly accurate TOPEX/Poseidon time series for study of equatorial signals.  相似文献   

4.
Jason, the successor to the TOPEX/POSEIDON (T/P) mission, has been designed to continue seamlessly the decade-long altimetric sea level record initiated by T/P. Intersatellite calibration has determined the relative bias to an accuracy of 1.6 mm rms. Tide gauge calibration of the T/P record during its original mission shows a drift of -0.1 ± 0.4 mm/year. The tide gauge calibration of 20 months of nominal Jason data indicates a drift of -5.7 ± 1.0 mm/year, which may be attributable to errors in the orbit ephemeris and the Jason Microwave Radiometer. The analysis of T/P and Jason altimeter data over the past decade has resulted in a determination of global mean sea level change of +2.8 ± 0.4 mm/year.  相似文献   

5.
A bottom pressure gauge (BPG) was installed in proximity (3.7 km at closest approach) of Jason-1 and formerly TOPEX/Poseidon (T/P) ground track No. 238 at the Wusi site, located ∼ 10 km offshore off the west coast of Santo Island, Vanuatu, Southwest (SW) Pacific. Sea level variations are inferred from the bottom pressure, seawater temperature, and salinity, corrected for the measured surface atmospheric pressure. The expansion of the water column (steric increase in sea surface height, SSH) due to temperature and salinity changes is approximated by the equation of state. We compare time series of SSH derived from T/P Side B altimeter Geophysical Data Records (GDR) and Jason-1 Interim Geophysical Data Records (IGDR), with the gauge-inferred sea level variations. Since altimeter SSH is a geocentric measurement, whereas the gauge-inferred observation is a relative sea level measurement, SSH comparison is conducted with the means of both series removed in this study. In addition, high-rate (1-Hz) bottom pressure implied wave heights (H1/3) are compared with the significant wave height (SWH) measured by Jason-1. Noticeable discrepancy is found in this comparison for high waves, however the differences do not contribute significantly to the difference in sea level variations observed between the altimeter and the pressure gauge. In situ atmospheric pressure measurements are also used to verify the inverse barometer (IB) and the dry troposphere corrections (DTC) used in the Jason IGDR. We observe a bias between the IGDR corrections and those derived from the local sensors. Standard deviations of the sea level differences between T/P and BPG is 52 mm and is 48 mm between Jason and BPG, indicating that both altimeters have similar performance at the Wusi site and that it is feasible to conduct long-term monitoring of altimetry at such a site.  相似文献   

6.
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

7.
《Marine Geodesy》2013,36(3-4):355-366
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

8.
S. CALMANT  K. CHENG  G. JAN  C. KUO  C. SHUM  Y. YI 《Marine Geodesy》2013,36(3-4):597-613
A bottom pressure gauge (BPG) was installed in proximity (3.7 km at closest approach) of Jason-1 and formerly TOPEX/Poseidon (T/P) ground track No. 238 at the Wusi site, located ~ 10 km offshore off the west coast of Santo Island, Vanuatu, Southwest (SW) Pacific. Sea level variations are inferred from the bottom pressure, seawater temperature, and salinity, corrected for the measured surface atmospheric pressure. The expansion of the water column (steric increase in sea surface height, SSH) due to temperature and salinity changes is approximated by the equation of state. We compare time series of SSH derived from T/P Side B altimeter Geophysical Data Records (GDR) and Jason-1 Interim Geophysical Data Records (IGDR), with the gauge-inferred sea level variations. Since altimeter SSH is a geocentric measurement, whereas the gauge-inferred observation is a relative sea level measurement, SSH comparison is conducted with the means of both series removed in this study. In addition, high-rate (1-Hz) bottom pressure implied wave heights (H 1/3 ) are compared with the significant wave height (SWH) measured by Jason-1. Noticeable discrepancy is found in this comparison for high waves, however the differences do not contribute significantly to the difference in sea level variations observed between the altimeter and the pressure gauge. In situ atmospheric pressure measurements are also used to verify the inverse barometer (IB) and the dry troposphere corrections (DTC) used in the Jason IGDR. We observe a bias between the IGDR corrections and those derived from the local sensors. Standard deviations of the sea level differences between T/P and BPG is 52 mm and is 48 mm between Jason and BPG, indicating that both altimeters have similar performance at the Wusi site and that it is feasible to conduct long-term monitoring of altimetry at such a site.  相似文献   

9.
Combined measurements of satellite altimeters make it possible to determine anomalies of the sea level of the Black Sea on a regular grid with a high spatial resolution 1/8°. In this work arrays of total geostrophic velocities of currents in the Black Sea basin are retrieved and compared with drifter measurements of current velocities for 1999–2007. The comparison is performed both for the whole array of drifter measurements (~110000 measurements) and individually for each drifter. To retrieve the velocities, two different arrays of mean dynamic topography (MDT) are used: synthetic and climatic mean dynamic topography. The comparison results demonstrate that using synthetic MDT is preferable for calculating geostrophic velocities. Velocities calculated by from satellite altimetry data agree with velocities obtained by in-situ data.  相似文献   

10.
Low frequency variability in the tropical Atlantic is complex and hard to witness due to the weakness of this signal compared to the dominant seasonal one. TOPEX/Poseidon and Jason provide a new tool to enlighten these topics by offering more than 10 years of continuous altimetric series. In the tropical regions, due to the vanishing of the Coriolis parameter, uncertainties of a few centimeters in sea level can result in large errors on geostrophic velocity which will propagate rapidly over the entire basin. Accuracy is then a crucial problem for these areas. The ARAMIS program (Altimétrie sur un Rail Atlantique et Mesures In Situ) has been developed by the French Institut de Recherche pour le Développement (IRD) and Centre National d'Etudes Spatiales (CNES) organizations in order to get a long-term survey of temperature, salinity and pCO2 structures in the tropical Atlantic along a merchant ship line. The first two ARAMIS cruises, in July 2002 and March 2003, were dedicated to Jason validation. The dynamical contrast between ARAMIS1 and ARAMIS2 is first analyzed here in agreement with seasonal variations of surface fluxes and wind forcing. Comparisons with TOPEX/Poseidon and JASON data are then presented in terms of sea level analysis. New geopotential models such as the Earth Gravitational Model 1996 (EGM96) that have become available with a resolution of undulations on the order of 50 km, are checked to get the absolute signal. Finally, the tropical Atlantic surface circulation characteristics are used to point out the agreements/discrepancies between all in situ/satellite products, as geostrophic current will emphasize the sea level results.  相似文献   

11.
The methodology of joint processing of the satellite altimetry and occasional hydrological observations in the Black Sea for 1993–2012 is developed. The original technique for reconstruction of the 3D temperature and salinity fields in the deep-sea part is proposed and implemented. This technique makes it possible to identify the depths at which a contribution of adiabatic processes to the deformation of the temperature and salinity profiles of the sea is predominant. Daily-averaged 3D fields of the seawater temperature and salinity in a baroclinic layer on a regular grid are reconstructed. The evaluation of accuracy of the reconstructed temperature and salinity arrays is performed by comparing them with the data of hydrological exploration. Structures of the temperature and salinity fields are correlated naturally with topography of the altimetric level and clearly indicate the synoptic variability. Seasonal and interannual variabilities of the kinetic energy (averaged over horizons of the 63–400 m layer) of the geostrophic currents calculated using the dynamic method makes it possible to reveal a sharp increase in the kinetic energy of the currents in the winter season of 2002. A high correlation is found between the interannual variability of the ERA-Interim wind stress curl averaged over the surface of the deep sea part and the kinetic energy of the geostrophic currents in the 63–400 m layer.  相似文献   

12.
A method to extract geostrophic current in the daily mean HF radar data in the Kuroshio upstream region is established by comparison with geostrophic velocity determined from the along-track altimetry data. The estimated Ekman current in the HF velocity is 1.2% (1.5%) and 48° (38°)-clockwise rotated with respect to the daily mean wind in (outside) the Kuroshio. Furthermore, additional temporal smoothing is found necessary to remove residual ageostrophic currents such as the inertial oscillation. After removal of the ageostrophic components, the HF geostrophic velocity agrees well with that from the altimetry data with rms difference 0.14 (0.12) m/s in (outside) the Kuroshio.  相似文献   

13.
《Marine Geodesy》2013,36(3-4):147-157
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were: 1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES); 2. To verify that platform performance requirements are met with respect to Jason-1 requirements; 3. To verify that payload instruments performance requirements evaluated at instrument level are met; 4. To assess the performance of the Jason-1 Ground System. This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

14.
15.
In this study a new approach for reconstructing the Mean Dynamic Topography of the Black Sea is applied. Constant observations (SVP measurements), drifters, and data of vertical sounding of the temperature and salt content together with measurements of sea level anomalies received from Topex/Poseidon mission satellite data were used. The absolute sea level received by altimetry data using the mean dynamic topography received during work was compared to the dynamic level received according to independent marine surveys. The comparison showed that the method represented in the study permits one to define more exactly the dynamic topography of the Black Sea when compared with the studies of previous authors. The results of this study will be useful to reconstruct the areas of the geostrophic currents according to satellite altimetry.  相似文献   

16.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

17.
《Marine Geodesy》2013,36(3-4):131-146
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

18.
The Jason-1 Mission   总被引:1,自引:2,他引:1  
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

19.
Surface velocities determined from trajectory of a drifting buoy from March through November 1987 are compared with surface geostrophic velocities determined from sea surface dynamic topography (SSDT) obtained from altimetry data with the aid of long-term hydrographic observation data. In general, these velocities show similar temporal variations in both zonal and meridional components, except in a period when obvious error is found in the altimetric SSDT field. When the buoy was trapped by several mid-ocean meso-scale eddies, the comparison is especially good. Systematic discrepancy is found, however, when the buoy was in the Kuroshio region, because of using both temporally and spatially smoothed mean SSDT estimated from hydrographic data; instead, surface geostrophic velocities determined from the altimetric SSDT referred to the improved geoid model result in better comparison.  相似文献   

20.
Absolute Calibration of the Jason-1 Altimeter Using UK Tide Gauges   总被引:1,自引:0,他引:1  
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1-61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号