首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
人工模拟降雨下细沟与细沟间流速的沿程分布   总被引:7,自引:1,他引:6  
刘和平  王秀颖  刘宝元 《地理研究》2011,30(9):1660-1668
径流流速不仅是坡面径流的重要水动力学特性,而且是计算其他水力特性及侵蚀产沙的重要参数,本文目的在于研究坡面细沟流和细沟间薄层水流流速沿坡面的变化过程,比较细沟和细沟间径流流速的差别。实验选取1m、2.5m、4m、5.5m、7m、8.5m和10m共7个坡长的小区(均为5。),装填粉壤土,采用历时2h、总雨量121mm的变...  相似文献   

2.
基于栅格的分布式降雨径流模拟系统及应用   总被引:6,自引:5,他引:1  
研制了一套基于栅格的分布式降雨径流模拟系统,利用流域地形、土壤、土地利用等空间数据和水文气象数据,可以进行流域特征提取、空间数据内插、降雨径流模拟及计算结果的三维动态显示和统计。通过在黄土岭流域的应用,说明该系统具有较好的模拟降雨径流过程的能力,而且使用方便。  相似文献   

3.
坡面动力侵蚀过程的实验研究进展   总被引:14,自引:3,他引:11  
本文首先总结了坡面流及坡面动力侵蚀过程的实验设备、技术手段及实验内容方面的进展,然后全面探讨了坡面侵蚀实验方面的国内外研究最新进展,最后作者分析了实验研究方面存在的问题,并提出了前景展望。  相似文献   

4.
This paper focuses on hillslope runoff and sediment transport within two catchments in southeast Spain. Five monitoring sites were established on hillslope concavities throughout the two catchments. The techniques used were mini-crest stage recorders, spray-painted lines, sediment traps and tipping bucket rain gauges (established during previous research). Results show that a storm event in the Rambla Nogalte on 30 June 2002 of 83.0 mm was responsible for a maximum runoff depth of 12 cm and a maximum hillslope sediment transport of 1886 cm3 m−1. The same storm in the Rambla de Torrealvilla produced 53.4 mm of rainfall on the 1 July 2002, had a maximum runoff depth of 26 cm and resulted in 2311 cm3 m−1 of sediment transport. There is evidence to suggest that measured sediment transport is related to runoff and a qualitative estimate of Morphological Runoff Zones (MRZ). Sediment transport and depth of runoff varied dramatically with lithology; marl sites produced most runoff and sediment transport, followed by the sites of mixed red and blue schist, then blue schist. These results are important for understanding the behaviour of slopes and show that for short lived storms with high, but not rare, rainfall intensities and total rainfall amounts, runoff can cause significant hillslope sediment transport in semi-arid areas.  相似文献   

5.
Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area.  相似文献   

6.
华北山区坡地产流规律研究   总被引:1,自引:0,他引:1  
Simulated rainfall is a valid tool to examine the runoff generation on the slope. 13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China. Simultaneously, rainfall, surface runoff, soil-layer flow, mantel-layer flow and soil moisture are monitored respectively. From the results, it is found that the hydrographs in all layers have the characteristics of rapid rise and fall. The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow. Surface flow, the main contributor, makes up more than 60% of the total runoff in the study area. It even exceeds 90% in the cases of high intensity rainfall events. Runoff coefficient (ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount, rainfall intensity and antecedent soil moisture, and the relationship can be well ex-pressed by a multiple linear regression function a = 0.002P + 0.1821 + 4.88Wa - 0.821. The relation between the rainfall intensity and the lag time of three flows (surface runoff, soil-layer flow and mantel-layer flow) is shown to be exponential. Then, the result also shows that the recession constant is 0.75 for surface runoff, is 0.94 for soil-layer and mantel-layer flow in this area. In this study area, the dominant infiltration excess runoff is simulated by Horton model. About 0.10 mm/min percolation is observed under the condition of different rainfall intensities, therefore the value is regarded as the steady infiltration rate of the study area.  相似文献   

7.
This paper describes and compares the hydrological responses of runoff, soil moisture and groundwater levels to rainfall events for two small semi-arid catchments over a 2-year period. Romwe received 1430 and 756 mm of rainfall in the 19999/00 and 2000/01 season, respectively. Mutangi received 756 and 615 mm of rainfall in the same years. Romwe generated 520 and 102 mm of runoff in the 19999/00 and 2000/01 seasons, respectively, while Mutangi generated 82 and 69 mm of runoff in the same years. The runoff response of the catchments was dominated by a relatively quick response to rainfall and with little or no significant contribution from regional groundwater or ‘old water’ sources. Total soil moisture storage to a depth of 120 cm was higher at Romwe than Mutangi for the entire study period reflecting the differences in the soil types. The groundwater level was closer to the surface and responded more quickly to rainfall at Romwe compared to Mutangi where water levels were between 12 and 16 m below the surface. There was a significant relationship between profile soil moisture and water table level at Romwe and none was observed at all in Mutangi. Significant (p<0.05) monthly rainfall runoff relationships were observed at both Romwe and Mutangi. At Romwe and Mutangi 91% and 76% of the runoff variation was accounted for by rainfall in the 1999/00 season, respectively. The rainfall–runoff relationship were different at Romwe for the two seasons, it was higher in the 1999/00 season than the 2000/01 season when 91% and 49% of the runoff variation was due to rainfall, respectively. The relationships were almost similar at Mutangi during the two seasons.  相似文献   

8.
黄土高原地区坡面土壤侵蚀具有明显的垂直分带性,溅蚀片蚀带是坡面侵蚀的最上方地带,研究片蚀过程含沙量变化有助于阐明坡面侵蚀规律。本文采用人工模拟降雨试验方法研究了黄土坡面片蚀稳定含沙量及其影响因素;试验处理包括2种质地的黄土(塿土和黑垆土),2个雨强(90和120 mm/h)和4个坡度(10°、15°、20°和25°)。结果表明:在不同质地黄土、降雨强度和坡度条件下,水流含沙量均呈现先减小后平稳的规律;稳定含沙量与土壤颗粒体积分形维数、降雨强度和坡度呈幂函数关系,稳定含沙量随土壤颗粒体积分形维数的增大而减小,随降雨强度和坡度的增大而增大,影响程度依次为土壤颗粒体积分形维数、降雨强度和坡度;所分析的水动力学指标中单位水流功率与稳定含沙量关系最密切,降雨强度对稳定含沙量的影响大于单位水流功率。  相似文献   

9.
Various researchers have studied the spatial pattern of soil surface components such as vegetation, rock fragments, bare soil, litter and surface crusts, as a key factor of hydrological behaviour in Mediterranean settings with heterogeneous patches of vegetation cover and strong human impact. The studies indicate that there is a mosaic of patches that generate run-off or infiltrate overland flow, distributed in various ways along hillslopes. Few of these studies, however, have looked at areas underlain by metamorphic rocks such as phyllites or schists. This study analysed the temporal and spatial variability of the effects of soil surface components on hydrological processes in a small dry Mediterranean catchment underlain by metamorphic rocks. A systematic sampling of multiple sites throughout a hydrological year was carried out.We related the hydrological behaviour of soil surface components to 1) their position along the hillslope, 2) the distance of existing vegetation tussocks from the line of run-off, 3) rainfall intensity and 4) the main physical/chemical soil properties affecting infiltration processes. Statistical analysis was used to check the validity of the relationships. The results show that soil surface components have highly variable effects, in both space and time, on soil hydrological behaviour. These effects particularly depend on the location along the line of maximum slope and the intensity of preceding rainfall, whose interaction defines soil hydrological status. These results are similar to those for other Mediterranean settings with different lithology, in that the succession of contributing patches are hydrologically interconnected along a hillslope. The variables used and the grouping of explanatory variables through principal component analyses were found to be suitable for discussing the spatial distribution of soil surface components in the hydrologically dynamic environment of the study area.  相似文献   

10.
紫色土坡面水流跌坑形态特征及其成因   总被引:1,自引:0,他引:1  
跌坑的形成是坡面侵蚀过程中的重要一环,是细沟开始出现的临界形态,跌坑的贯穿标志着细沟的形成。本研究采用模拟降雨与微地形测量相结合的方法,调查了不同雨强下紫色土坡面跌坑的发育过程及其形态分布。试验结果表明,降雨初期紫色土坡面水流跌坑边界模糊,横断面上跌坑基本在相同水平线上,与紫色土颗粒组成较粗有关;1.83~2.33 mm/min的雨强下,顺坡跌坑平均间距变化于8.2~9.4 mm之间,跌坑深度顺坡分布呈现较大的波动性,平均深度介于1.4~1.8 cm,总体上随雨强呈增大趋势;横断面上跌坑宽度变化相对较大,平均宽度介于9.4~16.3 cm,随雨强变化趋势不明显;跌坑水平间距除边界外相对稳定,地势低洼处优先形成跌坑,但也并非尽然;基于运动波理论分析认为,紫色土坡面跌坑的连续分布是坡面流运动波的能量周期性波动作用形成。  相似文献   

11.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

12.
根据对蒋家沟泥石流源地的崩塌、滑坡、散流坡,在旱季与雨季不同时段,降雨入渗后的土壤含水状况观测,以及泉水季节性变化,详细分析了泥石流源地崩塌、滑坡、散流坡土体的应力应变特性对降雨的响应过程差异.在雨季滑坡临空面和滑坡体内的土体含水量分别为6.67%、4.8%,滑坡活动主要是通过前缘剪出口崩塌方式补给下方沟床.崩塌体由于土体结构极为松散,在雨季该土体含水量通常高达8.85%~16%,使其土体的抗剪强度(C、φ)处于极限应力状态,一旦遇到降雨浸润和冲刷,迅速触变液化,转化为高浓度泥石流的侵蚀产沙过程.  相似文献   

13.
Hydrological connectivity is a term often used to describe the internal linkages between runoff and sediment generation in upper parts of catchments and the receiving waters. In this paper, we identify two types of connectivity: direct connectivity via new channels or gullies, and diffuse connectivity as surface runoff reaches the stream network via overland flow pathways. Using a forest road network as an example of a landscape element with a high runoff source strength, we demonstrate the spatial distribution of these two types of linkages in a 57 km2 catchment in southeastern Australia. Field surveys and empirical modelling indicate that direct connectivity occurs primarily due to gully development at road culverts, where the average sediment transport distance is 89 m below the road outlet. The majority of road outlets were characterised by dispersive flow pathways where the maximum potential sediment transport distance is measured as the available hillslope length below the road outlet. This length has a mean value of 120 m for this catchment. Reductions in sediment concentration in runoff plumes from both pathways are modelled using an exponential decay function and data derived from large rainfall simulator experiments in the catchment. The concept of the volume to breakthrough is used to model the potential delivery of runoff from dispersive pathways. Of the surveyed road drains (n=218), only 11 are predicted to deliver runoff to a stream and the greatest contributor of runoff occurs at a stream crossing where a road segment discharges directly into the stream. The methodology described here can be used to assess the spatial distribution and likely impact of dispersive and gullied pathways on in-stream water quality.  相似文献   

14.
华北石质山区坡地产流模型   总被引:3,自引:0,他引:3  
坡地是流域的基本产流单元。对坡地产流模型的研究,可为研究流域的水文过程奠定基础。本文在认识坡地产流规律的基础上,经过对人工模拟降雨试验中取得的产流各个环节(降雨、出流及土壤含水量变化)的数据的分析,建立了一个具有物理机制的简单的坡面产流模型。其中,使用Horton模型模拟入渗和地表产流过程,用水箱模型模拟壤中流过程。模型能够同时对降雨过程中的地表、地下出流和土壤含水量变化过程进行模拟。计算得到的产流总量的误差较小,但在变化过程线上存在一些差异。这些差异主要是由模型对实际情况的简化和假定、数学模拟的局限性、变雨强降雨过程的复杂性等因素引起的。这种分层组合的坡面产流模型对华北石质山区的上层超渗、下层蓄满的产流特征是可行的。本文所做的工作是对华北石质山区分布式水文模型的产流模块的初步尝试。  相似文献   

15.
ABSTRACT. Runoff generation and soil erosion were investigated at the Guadalperalón experimental watershed (western Spain), within the land‐use system known as dehesa, or open, managed evergreen forests. Season and type of surface were found to control runoff and soil‐loss rates. Five soil units were selected as representative of surface types found in the study area: hillslope grass, bottom grass, tree cover, sheep trails, and shrub cover. Measurements were made in various conditions with simulated rainfall to gain an idea of the annual variation in runoff and soil loss. Important seasonal differences were noted due to surface cover and moisture content of soil, but erosion rates were determined primarily by runoff. Surfaces covered with grass and shrubs always showed less erosion; surfaces covered with holm oaks showed higher runoff rates, due to the hydrophobic character of the soils. Concentrations of runoff sediment during the simulations confirmed that erosion rates at the study site depended directly on the sediment available on the soil surface.  相似文献   

16.
坡地土壤氮素与降雨、径流的相互作用机理及模型   总被引:58,自引:0,他引:58  
坡地土壤氮素径流损失表现为两种形式 ,溶解于径流中的矿质氮随径流液流失 ,吸附于泥沙颗粒表面以无机态和以有机质形式存在的氮素。坡地土壤氮素流失过程实际上是表层土壤氮素与降雨、径流相互作用的过程 ,土壤氮素流失的多少主要受相互作用的限制。从分析土壤与降雨、径流相互作用入手 ,分析了土壤氮素与降雨、径流相互作用过程及机理 ,并对相互作用模型进行探讨。  相似文献   

17.
黄土高原典型半干旱区水热变化及其土壤水分响应   总被引:12,自引:8,他引:4  
利用黄土高原典型半干旱代表区68 a(1937-2004年)降水、气温资料和34 a(1971-2004年)土壤湿度资料,研究黄土高原半干旱区水热变化及土壤水分响应。结果表明:黄土高原半干旱区在近70 a中气温以下降为主,3-6月降水存在显著增多趋势,气温、降水倾向具有明显时段差异。干旱年份或少雨时段长周期振荡加强、短周期衰减;相对冷的时期气温振荡周期明显,反之不明显。干旱是该地区土壤的基本气候特征,生长期土壤水分波动式下降,蓄水期土壤水分波动式上升,总体上以下降为主,20世纪70年代中后期土壤水分较好,80年代土壤水分较差,90年代末到21世纪初转好。土壤水分对短期降水变化、降水气温气候变化及短周期振荡都存在明显响应。  相似文献   

18.
用非饱和土壤物理参数模拟坡面产流过程研究   总被引:14,自引:0,他引:14  
采用人工模拟降雨方法,在用蒸发法测定非饱和土壤物理参数和基础上,运用修正的Green—Ampt入渗模型,结合退水曲线法和坡面运动波模型.研究了9场不同雨强和不同历时模拟降雨的产流过程。结果表明模拟误差在11.0%-30.7%间变化,80%的模:似误差可控制在18%以内,说明用非饱和土壤物理参数可以进行一般精度要求的坡面径流过程模拟。  相似文献   

19.
坡面流与坡面侵蚀动力过程研究的最新进展*   总被引:21,自引:3,他引:18  
胡世雄  靳长兴 《地理研究》1998,17(3):326-335
在回顾了坡面流及坡面侵蚀过程研究的简史与现状的基础之上,全面总结了坡面流形成机理及其模式、坡面流水动力学特性、坡面侵蚀动力过程及其侵蚀产沙模型诸方面研究的最新进展,并对坡面流各要素分析及坡面小侵蚀陡坎的形成等进行了一些探讨。最后,提出了坡面流及坡面侵蚀过程研究中存在的主要问题及未来展望。  相似文献   

20.
泥石流预报中前期有效降水量的确定   总被引:16,自引:2,他引:14  
韦方强  胡凯衡  陈杰 《山地学报》2005,23(4):453-457
前期有效降水量是泥石流预报的重要参数之一,对不同类型泥石流的形成有不同的影响形式,对土力类泥石流的形成主要是影响泥石流形成区土体的土壤含水量.在每次前期降水增加的土壤含水量和其有效降水量遵循相同衰减规律,以及每次前期降水的有效降水量和其增加的土壤含水量衰减过程都是相互独立的假设条件下,通过分析土壤含水量随时间的变化关系,可以得到前期有效降水量与前期降水量随时间的变化关系,从而可以确定前期有效降水量.通过对云南蒋家沟降水和土壤含水量的实际观测,对这个关系进行了分析研究,并利用最小二乘法得出了前期有效降水量的计算公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号