首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
杨勇  汤良杰  郭颖  谢大庆 《中国地质》2016,(5):1569-1578
为了确定塔中隆起NNE向走滑断裂特征及形成机制,利用构造要素相关性分析及构造解析方法,通过对二维和三维资料的解释,揭示了走滑断裂的构造变形特征,确定了走滑断裂的形成机制。NNE向走滑断裂在地震剖面上表现为压扭和张扭在垂向上叠加的特点,其形成演化主要经历了中奥陶世末压扭和晚志留世—中泥盆世张扭两个阶段。先存基底软弱带和塔里木板块周缘造山带的演化共同控制了这套走滑断裂的形成。中奥陶世末,塔里木板块南缘洋盆俯冲闭合产生的近南北向挤压应力斜向作用于NNE向的基底软弱带之上,导致断裂上部地层被撕裂产生走滑分量,从而形成了北东向的左旋走滑断裂系统,同时,来自塔里木板块西北缘的挤压应力垂向作用于走滑断裂上,导致NNE向走滑断裂发生压扭变形。晚志留世—中泥盆世,塔里木板块南缘的挤压应力继续斜向作用于NNE向走滑断裂之上导致其继续发生走滑变形,同时,来自塔里木盆地西北缘的NW向伸展应力垂向作用于走滑断裂上,导致NNE向走滑断裂发生张扭变形。  相似文献   

2.
塔里木盆地巴楚隆起断裂差异活动特征及成因演化   总被引:1,自引:0,他引:1       下载免费PDF全文
巴楚隆起是塔里木盆地重要的含油气构造单元,因其断裂构造特征与演化异常复杂,严重制约了对该地区构造特征及演化的认识和油气勘探工作。本文通过对地震资料精细构造解释,并结合塔里木盆地构造演化背景及最新的钻井、露头等资料,阐明了巴楚隆起断裂活动具有明显的分期差异性和分区、分带、分段及分层差异性。巴楚隆起断裂构造主要经历了4期差异活动,即加里东早期发育张扭性断裂、海西晚期断裂挤压反转、喜马拉雅山中期断裂强烈压扭逆冲与分区差异变形、喜马拉雅山晚期西南缘断裂带分段分层差异改造与叠加。断裂演化主要受控于加里东早期、海西晚期和喜马拉雅山中-晚期构造运动及对应时期塔里木古陆周缘洋盆开合与造山作用,喜马拉雅山中期是巴楚隆起断裂活动关键期,因受西昆仑和西南天山强烈挤压,隆起西段发生“屈服型”冲断隆升与走滑旋转,东段相应发生“受限型”弧形逆冲与向南掀斜,喜马拉雅山晚期断裂主要活动表现在隆起西北缘和西南缘,特别在西南缘断裂带发生了强烈的分段、分层差异叠加改造,其成因与西昆仑强烈隆升和向北挤压密切相关。  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):177-195
The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quaternary volcanoes, and (3) a 5-km thick, undeformed Plio-Quaternary continental volcano-sedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional–contractional, and Oligocene-Quaternary in age; whereas it is compressional–extensional, and Plio-Quaternary in age in the east Anatolian plateau and the Lesser Caucasus.Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional–contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (∼ 12 Ma) continent–continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N–S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places.  相似文献   

4.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   

5.
Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.  相似文献   

6.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


7.
Abstract

The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quatemary volcanoes, and (3) a 5-km thick, undeformed Plio-Quatemary continental volcanosedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional-contractional, and Oligocene-Quaternary in age; whereas it is compressional-extensional, and Plio-Quatemary in age in the east Anatolian plateau and the Lesser Caucasus.

Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional- contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (~ 12 Ma) continent-continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.

Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N-S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

8.
We performed numerical simulations to determine the contemporary maximum horizontal compressive stress (σHmax) in the northeast India region, the Bengal basin (Bangladesh), and the adjoining Indo-Burma Ranges, with different boundary conditions. The regional tectonic stress was simulated using the finite element method (FEM) under the plane stress condition. Most of the study areas show NE–SW regional stress orientation, which is consistent with other stress indicators, such as earthquake focal mechanism solutions. The E–W trending Dauki fault, which separates the Shillong plateau to the north from the Bengal basin to the south, plays a major role in the stress distribution and regional deformation. This fault alone accommodates ~25% of the regional surface displacement rate of the study area. The fault pattern of the study area was also simulated using rheological parameters and the Mohr–Coulomb failure criterion. The simulated results reproduce the observed tectonic state of the area, including a strike-slip regime along the Dauki fault, in the southwestern part of the Bengal basin, and in the Tripura fold belt areas. The modeling indicates that the Brahmaputra valley to the north of the Shillong plateau and to the south of the Himalayan frontal thrust exhibits thrust/reverse faulting with a strike-slip component, and in the Indo-Burma Ranges, strike-slip faulting is predominant with a reverse fault component.  相似文献   

9.
青藏高原东缘岷江断裂构造特征、变形序列和演化历史   总被引:3,自引:0,他引:3  
岷江断裂是青藏高原东缘的重要边界断裂,呈南北向延伸。地球物理场背景及地质演化历史的研究表明,岷江断裂是一条具有长期发展历史的大断裂。岷江断裂的活动具有多期次性:晚古生代时已经存在,为张性断裂;中生代受北东一南西方向挤压,产生右旋走滑运动;新生代以来,区域应力转变为北西一南东向挤压,随着青藏高原东缘物质向南东方向逃逸,岷江断裂在逆冲的同时伴随着左旋走滑,现在的GPS测量结果显示,岷江断裂仍在进行左旋运动。  相似文献   

10.
Two models with different boundary conditions were carried out to simulate the structural evolution of the Kekeya-Hetian fold-and-thrust belt and Kashi-Yecheng strike-slip belt in the eastern margin of Pamir salient, respectively. The analogue modeling results show that: (1) Both of the Kekeya-Hetian fold-and-thrust belt and Kashi-Yecheng strike-slip belt in the eastern margin of Pamir salient were formed under compressive shearing. Strike-slip faults occurred within both of the belts, but the displacement of these strike-slip faults in the Kekeya-Hetian fold-and-thrust belt is less than that in the Kashi-Yecheng strike-slip belt; (2) The Kekeya-Hetian fold-and-thrust belt is mainly under the influence of compression stress with weaker shearing stress while the Kashi-Yecheng strike-slip belt is mainly under the influence of shearing stress with oblique compressive stress. The strike-slip faults are mainly located in the piedmont within these two belts. The effect of the strike-slip fault diminishes towards the front of the thrust belt (to the interior basin); (3) In the front of the boundary strike-slip faults (to the interior basin), the intersecting arc thrust faults occurred successively along the shortening direction. These structural features demonstrated that the structures evolved northwards in the eastern margin of Pamir salient; (4) The oblique compression does not necessarily result in high angle faults or vertical faults, whereas low-middle angle thrust faults with strike-slip displacement are also possible. Hence, more attention should be paid to such thrust faults during the structural analysis of seismic profiles in the eastern margin of Pamir salient (e.g. the structural belts in piedmont of western Tarim Basin). © 2017, Science Press. All right reserved.  相似文献   

11.
甘孜—理塘断裂带北段构造特征及其演化过程   总被引:3,自引:0,他引:3  
甘孜-理塘断裂带是义敦造山带与雅江褶皱带的分界断裂。该带由韧性又脆性冲断层、平移断层,以及各种岩块、构造岩片等组合而成。其演化历史主要经历了晚三叠世洋壳的俯冲、晚三叠世末期弧-陆碰撞、陆内会聚和喜马拉雅期断陷的复杂演化过程。  相似文献   

12.
利用物理模拟实验,建立了两个不同边界条件的模型分别模拟帕米尔突刺东缘柯克亚-和田褶皱冲断带和喀什-叶城转换断层带的逆冲走滑构造演化过程,进而分析和讨论了研究区构造变形特征和变形机制。物理模拟实验结果表明:(1)帕米尔突刺东缘的柯克亚-和田褶皱冲断带和喀什-叶城转换断层带均形成于压扭应力场作用下,发育明显断层走滑现象,前者逆冲前缘断层兼具左行走滑特征,后者逆冲前缘断层则具右行走滑特征,但前者总体走滑量明显小于后者;(2)帕米尔突刺东缘的柯克亚-和田褶皱冲断带和喀什-叶城转换断层带走滑作用均主要位于山前边界断层带,越靠近逆冲前缘(盆地内部),走滑效应越微弱,挤压效应越明显;(3)在边界走滑断层前缘(往盆地方向),弧形断裂由挤压方向向前依次产生,并且斜向相交,验证了帕米尔东缘冲断带构造演化符合自南向北依次变新的规律;(4)在斜向压扭作用过程中,走滑断层构造带不一定发育明显的高角度甚至直立的断层,也可能表现为逆冲叠瓦构造楔样式,形成走滑逆断层,故在进行帕米尔突刺东缘(如塔西南山前)地震剖面构造解析时应充分关注这种构造类型。  相似文献   

13.
Based on our detailed structural characterization, we examine possible relationships between thrust faults and strike-slip faults and thrust-cored folds and depositional units in the Silla Syncline, a 4 km wide fold composed of fine-grained mudstone, coarse sandstone and conglomerate deposits of the Cerro Toro Formation in the Magallanes foreland basin, Chilean Patagonia. The syncline is bounded on its western flank by an asymmetric anticline and on its eastern flank by a broad zone of thrust faults and associated folds, which are oriented sub-parallel to the syncline axis. Deposition of the coarse-grained units of the Silla Syncline appears to have taken place in this structurally defined trough controlled primarily by thrust fault related growth structures flanking the syncline.The syncline and surrounding area have also been deformed by two sets of strike-slip faults, one right-lateral and one left-lateral. The strike-slip and thrust faulting operated contemporaneously for much of their active periods, although it appears that thrust faulting, confined within the fine-grained units, initiated slightly earlier than strike-slip faulting. In addition, younger igneous intrusions at high angle to bedding generally localize along the strike-slip faults. The cross-cutting relationships among the intrusions, strike-slip faults, and flexural slip faults show that all these structures were active during the same period, which extends beyond mid-Miocene.These conclusions support the premise that structures in deep-water sediments are important for understanding not only the deformation of a foreland basin, but also its depositional architecture.  相似文献   

14.
 We analysed fault plane solutions and borehole breakouts in the eastern part of the Eastern Alps and found a heterogeneous stress field which we interpret as a transition zone of three different stress provinces: the western European stress province with NW to NNW SH orientation and mainly strike-slip faulting regime; the Adriatic stress province with a radial stress pattern and thrust faulting to strike-slip faulting regime; and the Dinaric-Pannonian stress province with NE SH orientation and strike-slip faulting regime. The western Pannonian basin seems to be a part of the transition zone with WNW to NW SH orientation. A stress regime stimulating strike-slip faulting prevails in the Eastern Alps. The south Bohemian basement spur as a major tectonic structure with a high rheological contrast to surrounding units has a strong influence on the stress field and exhibits the highest seismicity at its tip due to stress concentration. From a constructed vertical stress orientation profile we found stress decoupling of the Northern Calcareous Alps from the underlying European foreland. Both the Molasse and the Flysch-Helvetic zone are considered as candidates for decoupling horizons due to stress orientation observations and due to their rheological behaviour. From seismological and rheological data, we suggest a horizontal stress decoupling across the Eastern Alps caused by a weakened central Alpine lithosphere. Received: 3 July 1998 / Accepted: 4 April 1999  相似文献   

15.
顺南地区位于塔里木盆地塔中隆起北部.受多期构造应力影响,该地区以走滑断裂大量发育为典型特征.对三维地震资料的精细解释和深入分析结果表明,研究区走滑断裂具有垂向分层、平面分段、多期次构造叠加的特征.顺南地区主要发育北东、北东东和北西向3组走滑断裂.北东向断裂活动性强,平面上发育雁列式断层及马尾状构造,剖面上主要发育对称花状、正花状与负花状上下分层叠置的复合花状构造.北东东和北西向断裂活动性较弱,剖面上以单条直立走滑断裂为主,平面上呈线性延伸或由多段同向走滑断层连接而成.根据断层构造样式和受力性质,将顺南1断裂沿走向划分为4段:2个复合花状-拉张段和2个简单花状-挤压段,拉张段和挤压段沿走向交替出现.顺南走滑断裂的形成主要经历了5期构造运动:加里东早期、加里东中期Ⅰ幕、加里东中期Ⅲ幕、加里东晚期-海西早期和海西晚期.其中,加里东中期Ⅰ幕和加里东中期Ⅲ幕为该区主要断层活动期.  相似文献   

16.
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.  相似文献   

17.
文通过研究区深层主要变形带构造变形解析,确认塔东南下古生界构造基本轮廓形成于中奥陶世末,定型于奥陶纪末—志留纪,北部和西部分别有喜山期和海西晚期构造的叠加。以塔中Ⅰ构造带—塔中5-38井构造带、塘北—玉北构造带、塔中南缘构造带为界,研究区可分为4个构造样式不同的构造单元。单元边界的构造变形相对剧烈,以逆冲—走滑断裂带为主,单元内部构造变形相对较弱。自东南向盆地内部,构造变形由强变弱。东南边缘塘沽巴斯凹陷以弧形向西北展布的基底滑脱型逆冲构造为特征,变形最为剧烈。晚奥陶世以凹陷为主,奥陶纪末期志留纪褶皱隆起。北侧为塔中隆起,是一个断裂—褶皱复背斜,主体发育于中奥陶世晚期,缺失中奥陶统,且控制了上奥陶统良里塔格组沉积时期孤立台地沉积,于奥陶纪末—志留纪定型。构造带以基底卷入扭动挤压断裂—褶皱变形为主,总体受控于北缘断层,自西向东逆冲幅度增大,西部为南北对称复背斜,东部形成向北逆冲的构造带。塔中隆起西段自北向南由逆冲挤压向压扭性走滑构造转变。西部巴楚东段及塔西南东部以区域性的隆升为主,与塔中隆起相似,大面积缺失中奥陶统地层。北部顺托地区则以走滑断裂发育为主,断裂主要活动期为奥陶纪末—志留纪和海西晚期。构造变形组合显示,塔东南下古生界构造变形动力主要来自盆地东南部,是东昆仑与阿尔金洋渐进闭合、俯冲碰撞过程导致塔里木板块变形的产物。变形时序及研究区NE向断裂运动规律表明板块作用自中加里东至晚加里东持续压扭的过程。塔东南地区各单元构造样式与强度差异表明盆地盖层变形明显受到基底断块与内部寒武系膏泥岩分布的制约。其次,断裂的多期活动体现了后期构造的叠合改造的作用,顺托地区NE向断裂可能与海西晚期构造运动的延展有关。  相似文献   

18.
济阳坳陷构造演化及其大地构造意义   总被引:151,自引:4,他引:147  
济阳坳陷由负反转盆地、右旋扭张盆地及主动裂谷三个原型叠加而成,并在中、新生代经历了四个演化阶段,三叠纪为板内造山作用阶段,济阳坳陷曾为五条NW向的以逆冲断层为主的压性构造带占据,早-中侏罗世造山作用结束;晚侏罗世-早始新世为负反转盆地阶段,三叠纪NW向逆冲断层发生反向伸展;中始新世-渐新世为右旋扭张盆地阶段,NE,ENE向扭张断裂发育,并进而成盆接受沉积,NW和断裂反向伸展活动受到抑制而渐趋消亡;中新世-全新世为主动裂谷阶段,“拗陷运动”取代“断陷运动”。济阳坳陷构造演化的阶段特征表明了郯庐断裂中、新生代的剪切运动史,即三叠纪右旋剪切,晚侏罗世-早始新世左旋剪切.中始新世-渐新世右旋剪切,中新世-全新世作弱右旋压剪。  相似文献   

19.
在四平市叶赫镇发现一系列走滑-逆冲断层,断层面平直、陡倾,走向集中在NNE15°~35°范围内,组成了佳木斯—伊通两条主干边界断裂之间的分支断裂带,分支断裂呈雁列式排布,与走向NE45°的主干边界断裂呈锐角相交,指示边界断裂具有右旋走滑特征。叶赫镇走滑-逆冲断裂带的发现为佳木斯—伊通断裂存在晚白垩世晚期—末期的走滑-逆冲事件提供了新证据。叶赫镇分支断裂带是石岭镇分支断裂带向南部的延伸,两者切割了相同的地层,具有相同的构造特征和构造属性,属于同一走滑-逆冲断裂系统,它们是晚白垩世晚期—末期同一地球动力学背景下的产物。  相似文献   

20.
《Geodinamica Acta》1999,12(5):303-319
The South Iceland Seismic Zone (SISZ) is located at the junction of three rift segments in southwestern Iceland. The presence of different types of faulting and of differently orientated subgroups in Upper Pliocene to Holocene formations indicate polyphase tectonism. We measured 736 minor faults at 25 sites. Two types of relationships between stress regimes are represented. The first type, named IDS (inhomogeneous data set), is characterized by the presence of two types of fault mechanisms, normal and strike-slip, consistent with a single direction of extension. The second type, named OSR (opposite stress regimes), is characterized by the presence of perpendicular directions of extensions for a single type (normal or strike-slip) of faulting. Because of contradictory chronological criteria, we infer that the OSR alternated during the brittle tectonic activity of the SISZ. Two stress regimes, primary and secondary, are characterized by directions of extension NW-SE and NE-SW, respectively. The general fracture pattern characterized for the primary stress regime in the SISZ includes NNE-SSW trending right-lateral strike-slip faults, conjugate ENE-WSW trending left-lateral faults and NE-SW normal faults. This distribution is quite consistent with a Riedeltype model of fault pattern in a left-lateral shear zone. The stress states characterized based on analysis of both the earthquake focal mechanisms and the recent faulting show great similarity in terms of stress directions. The main difference is the larger ratio of strike-slip motions representing 71 % of the total population in the case of earthquake focal mechanisms, whereas for the whole set of faults the proportion of strike-slip faulting was 50 %. We explain that a temporal evolution of the tectonic regime in the SISZ region, accompanied by a gradual change in stress field, starts with rift-type pure extension and progressively leads to development of preferentially strike-slip structures in the kinematic context of leftlateral transform motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号