首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
地球物理   5篇
地质学   9篇
海洋学   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有17条查询结果,搜索用时 78 毫秒
1.
Variscan to Alpine magmatic activity on the North Tethys active Eurasian margin in the Caucasus region is revealed by 40Ar/39Ar ages from rocks sampled in the Georgian Crystalline basement and exotic blocs in the Armenian foreland basin. These ages provide insights into the long duration of magmatic activity and related metamorphic history of the margin, with: (1) a phase of transpression with little crustal thickening during the Variscan cycle, evidenced by HT-LP metamorphism at 329–337 Ma; (2) a phase of intense bimodal magmatism at the end of the Variscan cycle, between 303 and 269 Ma, which is interpreted as an ongoing active margin during this period; (3) further evolution of the active margin evidenced by migmatites formed at ca. 183 Ma in a transpressive setting; (4) paroxysmal arc plutonic activity during the Jurassic (although the active magmatic arc was located farther south than the studied crystalline basements) with metamorphic rocks of the Eurasian basement sampled in the Armenian foreland basin dated at 166 Ma; (5) rapid cooling suggested by similar within-error ages of amphibole and muscovite sampled from the same exotic block in the Armenian fore-arc basin, ascribed to rapid exhumation related to extensional tectonics in the arc; and finally (6) cessation of ‘Andean’-type magmatic arc history in the Upper Cretaceous. Remnants of magmatic activity in the Early Cretaceous are found in the Georgian crystalline basement at c. 114 Ma, which is ascribed to flat slab subduction of relatively hot oceanic crust. This event corresponds to the emplacement of an oceanic seamount above the N Armenian ophiolite at 117 Ma. The activity of a hot spot between the active Eurasian margin and the South Armenian Block is thought to have heated and thickened the Neo-Tethys oceanic crust. Finally, the South Eurasian margin was uplifted and transported over this hot oceanic crust, resulting in the cessation of subduction and the erosion of the southern edge of the margin in Upper Cretaceous times. Emplacement of Eocene volcanics stitches all main collisional structures.  相似文献   
2.
3.
A plate-tectonics model of the Alpine evolution of the Caucasus is suggested. According to the model, in the Jurassic-Neocomian the Caucasian territory comprised the shelf of the East European platform, the marginal sea of the Great Caucasus, the Pontian-Transcaucasian island arc, the Anatolian-Minor Caucasian oceanic basin (Tethys) and the Iranian-Turkish microcontinent. Along the northern margin of the oceanic basin a convergent plate juncture extended. Part of the Caucasus, situated north of this plate boundary, represented the West Pacific-type active margin of the East European platform. In the Middle Cretaceous the Iranian-Turkish microcontinent collided with the Pontian-Transcaucasian island arc and as a result the Transcaucasian-Minor Asian continental block originated. In the central part of the latter an extensive Paleogene andesitic belt formed, with the Black Sea-Adjara-Trialetian and Talysh-South Caspian basaltic rift troughs on its rear (northern) side (incipient Black Sea and South Caspian basins). Major plate boundary shifted south, into the Zagros-Taurus basin, though the Anatolian-Minor Caucasian suture zone remained mobile in the Upper Cretaceous and Paleogene. From the Oligocene, under conditions of ongoing convergence of the Eurasian and Afro-Arabian continental blocks, the present-day intracontinental mountainous foldbelt has developed.  相似文献   
4.
Myanmar is tenth among the world’s fish-producing countries and third in ASEAN (Association of Southeast Asian Nations). To understand the mechanisms underlying the high production, oceanographic and phytoplankton surveys, including primary productivity measurements based on pulse amplitude modulation fluorometry, were conducted near an active fishing ground near Myeik City. Three surveys, one in each of the representative seasons and covering the characteristic coastal environments, showed well-defined seasonality in primary production and phytoplankton occurrence. End of the dry season was the most productive, with productivity of 2.59 ± 1.56 g C m?2 day?1 and high concentration of chlorophyll a (3.14 ± 2.64 µg L?1). In this season, the phytoplankton population was dominated by high densities of the diatoms Bellerochea horologicalis and Chaetoceros curvisetus, whereas primary productivity was low at the onset of the dry season, 1.36 ± 0.77 g C m?2 day?1. However, this low primary production might be compensated by activation of microbial food chains originating from high dissolved organic carbon. The rainy season exhibited the lowest production, 6.6% of the end of the dry season, due to the extensive discharge of turbid water from the rivers which lowered euphotic layer depth and resulted in an unusually high diffuse attenuation coefficient of 2.30 ± 1.03 m?1. This incident of turbid water may be related to soil erosion from deforestation and mangrove deterioration. This research reveals the seasonal trend in Myanmar’s coastal productivity and its relationship to the tropical monsoon climate as well as emphasizing the importance of tropical coastal environments to the sustainability of the fisheries.  相似文献   
5.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   
6.
The area from the Greater Caucasus to the southeast Turkey is characteri:;.ed and shaped by several major continental blocks. These are Scythian Platform, Pontian-Transcaucasu.,; Continent-Arc System (PTCAS), the Anatolian-lranian and the Arabian Platforms. The aim of this paper is to define these continental blocks and describe and also compare their boundary relationships along the suture zones. The Scythian Platform displays the evidence of the Hercynian and Alpine orogens. This platform is separated from the PTCAS by the Greater Caucasus Suture Zone. The incipient collision began along this suture zone before middle-late Carboniferous whereas the final collision occurred before Oligocene. The PTCAS can be divided into four structural units: (1) the Georgian Block - northern part of the Pontian-Transcaucasian island-arc, (2) the southern and eastern Black Sea Coast-Adjara-Trialeti Unit, (3) the Artvin-Bolnisi Unit, comprising the northern part of the southern Transcaucasus, and (4) the Imbricated Bayburt-Garabagh Unit. The PTCAS could be separated from the Anatolian Iranian Platform by the North Anatolian-Lesser Caucasus Suture (NALCS) zone. The initial collision was developed in this suture zone during Senonian-early Eocene and final collision before middle Eocene or Oligocene-Miocene. The Anatolian-lranian Platform (AIP) is made up of the Tauride Platform and its metamorphic equivalents together with Iranian Platform. It could be separated from the Arabian Platform by the Southeastern Anatolian Suture (SEAS) zone. The collision ended before late Miocene along this suture zone. The southernmost continental block of the geotraverse is the Arabian Platform, which constitutes the northern part of the Arabian-African Plate. This platform includes a sequence from the Precambrian felsic volcanic and clastic rocks to the Campanian-early Maastrichtian fiyschoidal clastics. All the suture zones include MORB and SSZ-types ophiolites in different ages. However, the ages of the suture  相似文献   
7.
8.
This paper presents a method for evaluating the residual structural capacity of earthquake‐affected steel structures. The method first quantifies the damage severity of a beam by computing the dynamic‐strain‐based damage index. Next, the model used to analyze the structure is updated based on the damage index, to reflect the observed damage conditions. The residual structural capacity is then estimated in terms of changes in stiffness and strength, which can be applied by structural engineers, via a nonlinear static analysis of the updated model. The main contributions of this paper are in performance evaluation of the dynamic‐strain‐based damage index for seismically induced damage using a newly developed substructure testing environment, consideration of various damage patterns in composite beams, and extension of a local damage evaluation technique to a residual capacity estimation procedure by incorporating the model‐updating technique. In laboratory testing, the specimens were damaged quasi‐statically, and vibration tests were conducted as the damage proceeded. First, a bare steel beam–column connection was tested, and then a similar one with a floor slab was used for a more realistic case. The estimated residual structural capacities for these specimens were compared with the static test results. The results verified that the proposed method can provide fine estimates of the stiffness and strength deteriorations within 10% for the specimen without the floor slab and within 30% for that with the floor slab. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
9.
The Earthquake Model of Middle East (EMME) Project aimed to develop regional scale seismic hazard and risk models uniformly throughout a region extending from the Eastern Mediterranean in the west to the Himalayas in the east and from the Gulf of Oman in the south to the Greater Caucasus in the North; a region which has been continuously devastated by large earthquakes throughout the history. The 2014 Seismic Hazard Model of Middle East (EMME-SHM14) was developed with the contribution of several institutions from ten countries. The present paper summarizes the efforts towards building a homogeneous seismic hazard model of the region and highlights some of the main results of this model. An important aim of the project was to transparently communicate the data and methods used and to obtain reproducible results. By doing so, the use of the model and results will be accessible by a wide community, further support the mitigation of seismic risks in the region and facilitate future improvements to the seismic hazard model. To this end all data, results and methods used are made available through the web-portal of the European Facilities for Earthquake Hazard and Risk (www.efehr.org).  相似文献   
10.
The evolution of Tethys is analysed on the basis of ophiolitic geology, reconstruction of continental margins, and plate kinematics. The North Anatolian-Minor Caucasian-South Caspian ophiolitic belt is considered to be the major suture of Palaeozoic Tethys, dividing its southern carbonate shelf from the Pontian-Caucasian-Turanian active margin. The Caucasian part of the latter comprises the Transcaucasian island arc, the Great Caucasian small ocean basin, the Great Caucasian island arc and the Precaucasian marginal sea, each characterised by its own magmatic, metamorphic and sedimentary facies association typical of that tectonic environments. The North Anatolian branch of Tethys persisted throughout the Palaeozoic and Mesozoic, whereas eastwards the major oceanic tract shifted south into the Zagros zone.The Northern frame of Mesotethys comprises the Pontain-Caucasian and Nakhichevan-Iranian island arc systems, divided by the Minor Caucasian basin, a relict of Palaeotethys reduced to a narrow northern branch of the Mesozoic ocean. In the late Cretacaous-Palaeogene, the youngest southwestern branch of Tethys separated Taurus-Anatolia from the Arabian shelf. Its ‘old’ northern branches were closed in the Palaeogene. Northward subduction in the South Anatolia-Zagros intracontinental basin triggered Neogene calc-alkaline volcanism in the Pontides, Antolia, Caucasus and Iran.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号