首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addressing non-uniqueness in linearized multichannel surface wave inversion   总被引:1,自引:0,他引:1  
The multichannel analysis of the surface waves method is based on the inversion of observed Rayleigh-wave phase-velocity dispersion curves to estimate the shear-wave velocity profile of the site under investigation. This inverse problem is nonlinear and it is often solved using 'local' or linearized inversion strategies. Among linearized inversion algorithms, least-squares methods are widely used in research and prevailing in commercial software; the main drawback of this class of methods is their limited capability to explore the model parameter space. The possibility for the estimated solution to be trapped in local minima of the objective function strongly depends on the degree of nonuniqueness of the problem, which can be reduced by an adequate model parameterization and/or imposing constraints on the solution.
In this article, a linearized algorithm based on inequality constraints is introduced for the inversion of observed dispersion curves; this provides a flexible way to insert a priori information as well as physical constraints into the inversion process. As linearized inversion methods are strongly dependent on the choice of the initial model and on the accuracy of partial derivative calculations, these factors are carefully reviewed. Attention is also focused on the appraisal of the inverted solution, using resolution analysis and uncertainty estimation together with a posteriori effective-velocity modelling. Efficiency and stability of the proposed approach are demonstrated using both synthetic and real data; in the latter case, cross-hole S-wave velocity measurements are blind-compared with the results of the inversion process.  相似文献   

2.
The paper presents a high-resolution global gravity field modelling by the boundary element method (BEM). A direct BEM formulation for the Laplace equation is applied to get a numerical solution of the linearized fixed gravimetric boundary-value problem. The numerical scheme uses the collocation method with linear basis functions. It involves a discretization of the complicated Earth’s surface, which is considered as a fixed boundary. Here 3D positions of collocation points are simulated from the DNSC08 mean sea surface at oceans and from the SRTM30PLUS_V5.0 global topography model added to EGM96 on lands. High-performance computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s surface with a resolution up to 0.1 deg. Inaccuracy of the approximate coarse solutions used for the elimination of the far zones’ interactions leads to a long-wavelength error surface included in the obtained numerical solution. This paper introduces an iterative procedure how to reduce such long-wavelength error surface. Surface gravity disturbances as oblique derivative boundary conditions are generated from the EGM2008 geopotential model. Numerical experiments demonstrate how the iterative procedure tends to the final numerical solutions that are converging to EGM2008. Finally the input surface gravity disturbances at oceans are replaced by real data obtained from the DNSC08 altimetryderived gravity data. The ITG-GRACE03S satellite geopotential model up to degree 180 is used to eliminate far zones’ interactions. The final high-resolution global gravity field model with the resolution 0.1 deg is compared with EGM2008.  相似文献   

3.
Flow exchange between surface and groundwater is of great importance be it for beneficial allocation and use of water resources or for the proper exercise of water rights. In large‐scale regional studies, most numerical models use coarse grid sizes, which make it difficult to provide an accurate depiction of the phenomenon. In particular, a somewhat arbitrary leakance coefficient in a third type (i.e., Cauchy, General Head) boundary condition is used to calculate the seepage discharge as a function of the difference of head in the river and in the aquifer, whose value is often found by calibration. A different approach is presented to analytically estimate that leakance coefficient. It is shown that a simple equivalence can be deduced from the analytical solution for the empirical coefficient, so that it provides the accuracy of the analytical solution while the model maintains a very coarse grid, treating the water‐table aquifer as a single calculation layer. Relating the empirical leakance coefficient to the exact conductance, derived from physical principles, provides a physical basis for the leakance coefficient. Factors such as normalized wetted perimeter, degree of penetration of the river, presence of a clogging layer, and anisotropy can be included with little computational demand. In addition the river coefficient in models such as MODFLOW, for example, can be easily modified when grid size is changed without need for recalibration.  相似文献   

4.
Simulation of geothermal systems is challenging due to coupled physical processes in highly heterogeneous media. Combining the exponential Rosenbrock–Euler method and Rosenbrock-type methods with control-volume (two-point flux approximation) space discretizations leads to efficient numerical techniques for simulating geothermal systems. In terms of efficiency and accuracy, the exponential Rosenbrock–Euler time integrator has advantages over standard time-discretization schemes, which suffer from time-step restrictions or excessive numerical diffusion when advection processes are dominating. Based on linearization of the equation at each time step, we make use of matrix exponentials of the Jacobian from the spatial discretization, which provide the exact solution in time for the linearized equations. This is at the expense of computing the matrix exponentials of the stiff Jacobian matrix, together with propagating a linearized system. However, using a Krylov subspace or Léja points techniques make these computations efficient.The Rosenbrock-type methods use the appropriate rational functions of the Jacobian of the ODEs resulting from the spatial discretization. The parameters in these schemes are found in consistency with the required order of convergence in time. As a result, these schemes are A-stable and only a few linear systems are solved at each time step. The efficiency of the methods compared to standard time-discretization techniques are demonstrated in numerical examples.  相似文献   

5.
We develop an efficient and versatile numerical model for carrying out high-resolution simulations of turbulent flows in natural meandering streams with arbitrarily complex bathymetry. The numerical model solves the 3D, unsteady, incompressible Navier-Stokes and continuity equations in generalized curvilinear coordinates. The method can handle the arbitrary geometrical complexity of natural streams using the sharp-interface curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos (2007) [1]. The governing equations are discretized with three-point, central, second-order accurate finite-difference formulas and integrated in time using an efficient, second-order accurate fractional step method. To enable efficient simulations on grids with tens of millions of grid nodes in long and shallow domains typical of natural streams, the algebraic multigrid (AMG) method is used to solve the Poisson equation for the pressure coupled with a matrix-free Krylov solver for the momentum equations. Depending on the desired level of resolution and available computational resources, the numerical model can either simulate, via direct numerical simulation (DNS), large-eddy simulation (LES), or unsteady Reynolds-averaged Navier-Stokes (URANS) modeling. The potential of the model as a powerful tool for simulating energetic coherent structures in turbulent flows in natural river reaches is demonstrated by applying it to carry out LES and URANS in a 50-m long natural meandering stream at resolution sufficiently fine to capture vortex shedding from centimeter-scale roughness elements on the bed. The accuracy of the simulations is demonstrated by comparisons with experimental data and the relative performance of the LES and URANS models is also discussed.  相似文献   

6.
A mathematical model to simulate stream/aquifer interactions in an unconfined aquifer subjected to time varying river stage was developed from the linearized Boussinesq equation using the principle of superposition and the concept of semigroups. The mathematical model requires an estimate of three parameters to simulate ground-water elevations; transmissivity, specific yield, and recharge. The solution has physical significance and includes terms for the steady-state water level, the steady-state water level as influenced by a change in river stage, a transient redistribution of water levels in the aquifer from the previous day, and a transient change in water level caused by a change in river stage. The mathematical model was tested using observed water table elevations at three locations across a 2-km-wide alluvial valley aquifer. The average absolute deviation between observed and simulated daily water levels was 0.09 m. The difference in river stage over the test year was 4.9 m.  相似文献   

7.
As a component of arid ecosystems, groundwater plays an important role in plant growth; therefore, it is essential to use deterministic models to reconstruct the process of groundwater level change. Typically, the linearized solution of the one-dimensional (1-D) Boussinesq equation yields acceptable performance in simulating transient conditions over short recharge periods in ephemeral stream systems, but the ability of this solution to simulate multiyear changes in groundwater levels is limited. In this study, an improved groundwater hydraulics (GH-D2) model is built based on the groundwater hydraulics (GH) solution of the 1-D Boussinesq equation to simulate multiyear changes in the groundwater level in ephemeral stream systems. The model is validated in the lower reaches of the Tarim River to simulate groundwater level fluctuations within the scope of influence of the river (300, 500, 750, 1050 m) over a 16-year period (2000 to 2015). To evaluate the performance of the models, the bias, mean absolute error, root mean squared error, Nash-Sutcliffe efficiency (NSE), and coefficient of determination (R2) are calculated. The results show that the improved GH-D2 model, which considers ephemeral streamflow, unsteady flow theory and the delayed response effect of groundwater level changes, performs well in simulating multiyear changes in the groundwater level in the ephemeral stream system. The observed and simulated values of the groundwater level at different river distances are consistent, and the model provides a new basis for multiyear simulations of groundwater level fluctuations in ephemeral stream systems.  相似文献   

8.
Gravity and magnetic data have been inverted to obtain the continuous lower surface of a 2.5 dimensional sedimentary basin. The non-linear problem is linearized and a solution is calculated through a recursive process until the predicted data matches the observed data. An average model is then calculated and a resolution analysis shows which features are uniquely determined. The results of individual inversion indicate that a final solution is initial model dependent but the average models are independent of the initial model except at the margins. The average model for the magnetic solutions have uniformly smaller spreads than the gravity solutions. The algorithms were applied to data from the Sanford Basin in North Carolina. The results indicate that the basin is asymmetrical in shape with a maximum depth of 3.2 km. Comparing these results with those obtained from a generalized linear inverse (GLI) algorithm indicate that the higher-frequency features determined from the GLI algorithm are not resolved.  相似文献   

9.
The non-linear soil-moisture diffusivity model can be approximately linearized by using values of diffusivity assumed constant for small intervals of space and time. By a series expansion of the diffusivity function and integrating the resulting series of differential equations with respect to time, an improved numerical model is developed. Results from application of this new approach to a sharp wetting-front soil infiltration problem indicates that a 67% saving in numerical effort is achieved at comparable estimation accuracy levels when using the traditional finite timestep Crank-Nicolson approach.  相似文献   

10.
岩石塑性变形条件下的Mohr-Coulomb屈服准则   总被引:4,自引:0,他引:4  
传统的Mohr-Coulomb强度准则仅描述了峰值强度状态下正应力和剪应力之间的关系,作为岩石破坏的判据.本文拓展概念,提出Mohr-Coulomb屈服准则表述岩石发生塑性变形后不同应力状态下屈服面的应力应变关系.在总结实验研究的基础上建立了使用三轴压缩试验数据确定塑性参数c和φ随内变量κ变化的实验技术方法,给出了评价各向同性模型精度的参量表达以及某些测试结果.采用具有各向同性强(软)化规律的Mohr-Coulomb屈服准则,利用岩石的初始屈服、峰值屈服和残余屈服三组参数可以将全过程应力应变曲线简化表征为四直线模型,它比三线性模型有更广泛的适用性.本文的结果为工程地质数值模拟提供了理论和实验基础,具有指导意义.  相似文献   

11.
In this paper, optimal operating rules for water quality management in reservoir–river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir–river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir–River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.  相似文献   

12.
A rigorous solution is developed from first principles to guide the preliminary design of cutoff walls installed to contain the migration of contaminants from source zones. The full analytic solution is used to develop a criterion for determining the configuration and hydraulics of optimal wall designs. The solution is used to demonstrate the interaction between the properties of the wall, the Darcy flux, and the concentration of contaminants at the outside face of the well. For a particular wall design, the containment criterion can be used to estimate the long-term concentration that will develop at the outside face of the wall. Alternatively, for a given concentration on the outside face of the cutoff wall, the containment criterion can be used to estimate the Darcy flux required to balance the outward diffusion of contaminants. The results of numerical simulations are presented to evaluate the analytic approach. The numerical results confirm that for a wall with known transport properties, a specified Darcy flux is associated with a unique outside contaminant concentration.  相似文献   

13.
Secondary flows induced by the blocking effect of a river plume on a transverse upwelling are investigated in a microtidal region of freshwater influence (ROFI). A nested version of the SYMPHONIE primitive-equation free-surface model for 3-D baroclinic coastal flows has been developed for the Rhône ROFI. The main characteristics of the model are a generalized sigma coordinate system in finite differences, using a time splitting for external and internal modes and high-order numerical advection schemes for density fields in combination with an modified turbulence closure scheme. The nesting system consists of two grids forced by the high-resolution ALADIN model atmospheric data. The coarse grid of 3 km resolution for the whole Gulf of Lions allows the forcing of the Liguro-Provençal large-scale current when the fine mesh of 1-km resolution is centred on the river mouth of the Grand Rhône. Documented field experiments from the Biodypar 3 field campaign performed during March 1999 are used for validation. Numerical results, CTD profiles and a SPOT TSM visible image are in good agreement concerning the shape and structure of the river plume. Other coastal flow features can be observed from satellite imagery. Computations of realistic situations recover these main secondary structures. Complementary process-oriented runs give an explanation of how the coastal upwelling induced by an inhomogeneous offshore wind is destabilized by the combination of the river plume and along-shelf current-blocking effects. In the end, a factor-separation analysis provides evidence that the locally non-linear effects in momentum contribute to the occurrence of secondary vortices.Responsible Editor: Phil Dyke  相似文献   

14.
Scouring and deposition processes resulting from variable rainfall and typhoon occurrence in tropical climatic conditions induce significant changes in the riverbeds of Taiwan. Along the Pachang River of western Taiwan, severe damage occurs during typhoons due to large and sudden variations in discharge, erosion, sediment transport and deposition. In order to simulate this process, the NETSTARS numerical modeling tool was used in the present paper. The influence of existing and planned check dam structures on flow control was also analyzed to determine their capacity to resist river erosion or to not be buried beneath sediments. Not only does the modeling tool allow calculation of the erosion-deposition behavior at the scale of the whole river, but it also provides local determination of the optimum location and characteristics such as foundation depth and lateral encroachment of future check dams. The results of a 10-year, long-term modeling simulation in terms of riverbed stability and scouring potential thus provide insights about unsafe future behavior at 4 sites. This numerical model provides a better general understanding and useful information for the optimal prevention of both the scouring damage and the burial related to sediment deposition with large changes in discharge and sediment transport.  相似文献   

15.
扩展成像条件下的最小二乘逆时偏移   总被引:2,自引:1,他引:1       下载免费PDF全文
刘玉金  李振春 《地球物理学报》2015,58(10):3771-3782
逆时偏移(RTM)是复杂介质条件下地震成像的重要手段.因受观测系统限制、上覆地层影响以及波场带宽有限等因素的影响,现行的常规RTM所采用的互相关成像条件通常对地下构造进行模糊成像.最小二乘逆时偏移(LSRTM)通过最小化线性Born近似正演数据和采集数据之间的波形差异,采用梯度类反演算法优化反射系数模型,获得的成像结果具有更高的分辨率和更可靠的振幅保真度.然而,基于波形拟合的LSRTM对背景速度模型的依赖性很强.误差太大的速度模型容易产生周波跳跃现象,导致LSRTM难以获得全局最优解.为了克服这一问题,本文基于扩展模型的思想,在线性Born近似下,推导得到RTM扩展成像条件.并基于最小二乘反演理论,提出扩展成像条件下的LSRTM方法.理论模型试算表明,本文方法不仅可以提供分辨率更高、振幅属性更为可靠的成像结果,而且能够在一定程度上消除速度误差对反演成像的影响.  相似文献   

16.
The behaviour of river waves is described using a simplified dimensionless form of the momentum equation in conjunction with the continuity equation. Three dimensionless parameters were derived based on a quantitative linear analysis. These parameters, which depend on the Froude number of the steady uniform flow and the geometric characteristics of the river, permit quantification of the influence of inertia and pressure in the momentum equation. It was found that dynamic and diffusion waves occur mainly on gentle channel slopes and the transition between them is characterized by the Froude number. On the other hand, the kinematic wave has a wide range of applications. If the channel slope is greater than 1%, the kinematic wave is particularly suitable for describing the hydraulics of flow. Since slopes in natural channel networks are often greater than 1%, an analytical solution of the linearized kinematic wave equation with lateral inflow uniformly distributed along the channel is desirable and was therefore derived. The analytical solution was then implemented in a channel routing module of an existing simple rainfall–runoff model. The results obtained using the analytical solution compared well with those obtained from a non‐linear kinematic wave model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
地震波场反演的BG-逆散射方法   总被引:5,自引:0,他引:5  
本文讨论利用三维反射地震数据进行波场反演的一种方法,旨在取得高分辨率的地球模型.这种方法用Backus-Gilbert的理论构造波动方程非线性反问题的逐次线性化迭代格式,用逆散射原理导出泛函的Frechet导数,并用最佳折衷准则求解线性化后的方程组.根据迭代过程中不断提高分辨率的思想和减少计算成本的原则,设计了可供实用的反演算法流程.  相似文献   

18.
The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin.  相似文献   

19.
地震层析成像反演中解的定量评价及其应用   总被引:11,自引:4,他引:7       下载免费PDF全文
对地震层析成像非线性问题线性化处理之后,各种反演算法归纳成为对不适定方 程的求解.地震层析成像反演算法的解的物理意义是给出地质结构,因此对于解的可靠性及 分辨率研究非常重要.然而许多反演算法不能给出解的评价方法,因而对解的可信度产生怀 疑.本研究根据解估计的分辨率矩阵的原理,提出LSQR(Least Square QR)算法解协方差矩 阵的评价算法,用相关分析可以为那些在求解过程中得不到分辨率矩阵的反演方法提供解的 定量评价.并用本文提出的解的定量评价方法试评了一个实际地壳模型的地震层析成像的 速度重建结果.  相似文献   

20.
Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds‐averaged Navier–Stokes Equations, which account for the mass and momentum effects of the vegetation, respectively. The model is applied using three different grid resolutions (0.2, 0.1 and 0.05 m) using time‐averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. Future applications of the model to the prediction of channel roughness, sedimentation and key eco‐hydraulic variables are presented, likely to be valuable for informing effective river management. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号