首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A stability analysis of reinforced foundation soil is presented in this paper. A method based on the discrete element method (DEM) is suggested for calculating the bearing capacity on strip footings over multilayer soils reinforced with a horizontal layer of geosynthetics. The proposed method can estimate the ultimate bearing capacity and the distribution of tensile force developed in the geosynthetics of the footing system by Winkler springs to account for the compatibility between soil blocks and tensile elements to consider the tensile behavior between soil and geosynthetics. For footings on various multilayer soils with or without reinforcement of geosynthetics, the results of the method were compared to the field test results as well as to those obtained by various methods proposed by other researchers.  相似文献   

2.
The scour hole around a pile will reduce the capacity of a laterally loaded pile. The strain wedge model is capable to derive a py curve for the analysis of a lateral loaded pile on a nonlinear Winkler foundation. To improve and extend the ability of the strain wedge method, a modified strain wedge (MSW) method is developed, in which a nonlinear lateral deflection of the pile is assumed to describe the varied soil strain distribution in the passive wedge. And then by treating the soil weight involved in the strain wedge as a vertical load at the bottom of the scour hole, an equivalent wedge depth is obtained to consider the effect of scour hole dimensions on the response of laterally loaded piles in sand. The validity of the MSW model is proved by comparisons with a centrifuge test without scour. And its applicability in the problem of a pile with scour is performed by a comparison with a model test and a FE analysis. The analysis shows the pile displacement at the pile head with scour can be obtained by multiplying the corresponding deflection without scour with an amplification factor related to scour depth at large load level.  相似文献   

3.
Abstract

Pile foundation is the most popular option for the foundation of offshore wind turbines. The degradation of stiffness and bearing capacity of pile foundation induced by cyclic loading will be harmful for structure safety. In this article, a modified undrained elastic–plastic model considering the cyclic degradation of clay soil is proposed, and a simplified calculation method (SCM) based on shear displacement method is presented to calculate the axial degradated capacity of a single pile foundation for offshore wind turbines resisting cyclic loadings. The conception of plastic zone thickness Rp is introduced to obtain the function between accumulated plastic strain and displacement of soil around pile side. The axial ultimate capacity of single piles under axial cyclic loading calculated by this simplified analysis have a good consistency with the results from the finite element analysis, which verifies the accuracy and reliability of this method. As an instance, the behavior of pile foundation of an offshore wind farm under cyclic load is studied using the proposed numerical method and SCM. This simplified method may provide valuable reference for engineering design.  相似文献   

4.
A fundamental study of pile–soil systems subjected to lateral loads in offshore deposit was conducted using experimental tests and numerical analysis. The emphasis was on the soil–pile rigidity of a laterally loaded pile in marine clay. Rigid- and flexible-pile analyses were conducted for comparison. A framework for determining the lateral load transfer curve (py curves) is proposed based on both field and laboratory model tests. A numerical analysis that takes into account the proposed py curves was performed for the pile flexibility parameters such as pile diameter, pile length, pile-bending stiffness, and the modulus of subgrade reaction. Based on the analysis, it is shown that the differences in bending moment and lateral displacement are more significant for flexible piles rather than rigid piles. It was found that the py curves influence the behavior of flexible piles more than rigid piles, thus the magnitude and distribution of the py curves are significantly important in flexible pile design.  相似文献   

5.
Pile foundations that support transmission towers or offshore structures are dominantly subjected to cyclic lateral load induced by wind and waves. For a successful design, it is crucial to investigate the effect of cyclic lateral loads on the pile behavior that is loaded laterally. Although the py curve method is generally utilized to design the cyclic laterally loaded pile foundations, the effect of cyclic lateral loads on the pile has not been properly implemented with the py curve. This reflects a lack of consideration of the overall stiffness change in soil–pile interaction. To address this, a series of model pile tests were conducted in this study on a preinstalled aluminum flexible pile under various sandy soil conditions. The test results were used to investigate the effect of cyclic lateral loads on the py behavior. The cyclic py curve, which properly takes into account this effect, was developed as a hyperbolic function. Pseudo-static analysis was also conducted with the proposed cyclic py curve, which showed that it was able to properly simulate cyclic laterally loaded pile behavior in sandy soil.  相似文献   

6.
A simplified method is introduced to obtain the fundamental frequency of offshore wind turbines supported by monopile foundations. Soil-pile interaction is modeled based on Winkler approach and concept of beam on elastic foundation. The soil is considered to have linearly varying modulus of subgrade reaction along depth which is a typical assumption for cohesionless soils. Rayleigh method which is based on conservation of total energy of the system is utilized. Firstly the natural frequency of the system with rigid pile is derived and then an innovative procedure is introduced to take pile flexural stiffness into consideration. Comparison between results of the present method with those of a numerical FE model for a typical 2 MW wind turbine structure shows excellent agreement for rigid pile and flexible pile with small value of slenderness ratio. The agreement is also good for flexible pile with higher slenderness ratios. A parametric study is carried out to investigate the effect of important parameters of foundation including pile slenderness ratio, pile aspect ratio and pile mass on the system natural frequency.  相似文献   

7.
An important aspect of deepwater well integrity assurance is conductor fatigue analysis under environmental loads acting on the riser system during drilling operation. Fatigue damage arises from stress changes in a structure due to cyclic loading. In practice, the lateral cyclic soil response is typically modelled using Winkler py springs. An appropriate soil model for conductor–soil interaction analysis is the one based on which the absolute magnitudes of stresses and their changes can accurately be predicted for well integrity evaluation. The API recommendations for py curves, which are often used for conductor–soil interaction analysis, have originally been developed for piled foundation and are inappropriate for well fatigue analysis. To that end, an extensive study involving four series of centrifuge model tests and FE numerical analyses was conducted to fundamentally study conductor–soil interaction under a wide spectrum of loading conditions. The tests simulated conductor installations in normally to over consolidated clays, and medium-dense clean sands. Soil models were developed specifically for conductor fatigue analysis for each of the soil types. The test results and soil models are presented in two papers. The first paper, Part I, presents an overview of the study and first series tests in normally to lightly over-consolidated kaolin clay and discusses the observations made with regards to monotonic and cyclic soil resistances and their relationship to conductor fatigue modelling. The second paper, Part II, presents centrifuge test results in normally to lightly over-consolidated Golf of Mexico (GoM) clay, over-consolidated natural clay and medium-dense clean sands along with the respective soil models developed for conductor fatigue damage prediction. Overall, the accuracy of fatigue life predictions using these novel soil models is very high – generally within about a few percentage of the measured values.  相似文献   

8.
The present study focuses on the compressibility and permeability characteristics of a crushed sandstone–mudstone particle mixture (SMPM). Two type of laboratory tests, which are compressibility–permeability test (CPT) and compressibility test only (CTO), are performed. Based on the test data, the effects of the seepage action on the compressibility and ones of the void ratio (e) on the permeability are analyzed. The rate of consolidation of the crushed SMPM is also discussed. The values of compressibility index (Cc) obtained from the CPT are greater about 1.32–4.81% than ones obtained from the CTO, but the values of preconsolidation stress (σp) obtained from the CPT are smaller about 2.34–9.83% than ones obtained from the CTO. The slope of fitting line of e~logK (where K is the coefficient of permeability, and log is the logarithm to base 10), defined as the permeability index (Kc), ranges from 0.146 to 0.337 with an average of 0.226. The value of Cc/Kc, used to evaluate the rate of consolidation, ranges from 0.905 to 1.250 with an average of 1.031. The rate of consolidation of the crushed SMPM may be analyzed by Terzaghi’s theory due to the average value of Cc/Kc very close to 1.0.  相似文献   

9.
This article reports on a series of small-scale, plane strain, 1 g physical model tests designed to investigate the bearing capacity and failure mechanics of end-bearing soil-cement columns formed via Deep Mixing (DM). Pre-formed soil-cement columns, 24 mm in diameter and 200 mm in length, were installed in a soft clay bed using a replacement method; the columns represented improvement area ratios, ap, of 17%, 26%, and 35% beneath a rigid foundation of width 100 mm. Particle Image Velocimetry (PIV) was implemented in conjunction with close-range photogrammetry in order to track soil displacement during loading, from which the failure mechanisms were derived. Bearing capacity performance was verified using Ultimate Limit State numerical analysis, with the results comparing favorably to the analytical static and kinematic solutions proposed by previous researchers. A new equation for bearing capacity was derived from this numerical analysis based on the improvement area ratio and cohesion ratio of the soil column and ground model.  相似文献   

10.
An attempt is made to present an automated analysis of laterally loaded piles using subgrade reaction theory and the P-δ curves governing the soil properties. The finite difference method is applied in establishing the governing equations. The pile response is obtained using the boundary conditions improved by Newtonian method. Results obtained are forces, moments, deflections and soil reactions for various depths of strata in which such piles exist. Based on these results future recommendations are made.  相似文献   

11.
The wave pressure and uplift force due to random waves on a submarine pipeline (resting on bed, partially buried and fully buried) in clayey soil are measured. The influence of various parameters viz., wave period, wave height, water depth, burial depth and consistency index of the soil on wave pressures around and uplift force on the submarine pipeline was investigated. The wave pressures were measured at three locations around the submarine pipeline (each at 120° to the adjacent one). It is found that the wave pressure and uplift force spectrum at high consistency index of the soil is smaller compared to that of low consistency index. Just burying the pipeline (e/D=1.0) in clayey soil reduces the uplift force to less than 60% of the force experienced by a pipeline resting on the seabed (e/D=0.0) for Ic=0.33.  相似文献   

12.
Abstract

Composite bucket foundation (CBF) is a wide-shallow foundation for offshore wind turbines, which can be transported and installed with the turbine as one unit at a one-step operation. Compared with deep pile foundations, its structural stability is more sensitive to the scouring by waves and currents. In this paper, a three-dimensional finite element model with CBF and surrounding soil is established to estimate the failure mode at different given soil scour conditions. The loading on CBF for offshore wind turbines is characterized by relatively small vertical loading V, larger horizontal loading H, and bending moment M, and the effect of erosion on bearing capacity of CBF is determined by using the fixed displacement ratio method. In addition, the failure envelopes of the CBF applied in HM and VHM loading modes are obtained. Results indicate that the bearing capacity of CBF under horizontal loading and bending moment will be significantly reduced by the decrease in the embedded depth of CBF due to the scouring depth and extent, as well as the HM, and VHM failure envelopes. The structural stability safety factor of CBF under different scouring conditions can be obtained through the three-dimensional envelope surface with respect to scouring depth and extent.  相似文献   

13.
The hottentot seabream Pachymetopon blochii is a small-sized (maximum 2.67 kg) sparid endemic to southern Africa. It is an important target in South Africa's Western Cape traditional linefishery, particularly in the absence of more valuable pelagic species (such as Thyrsites atun and Seriola lalandi). In 2000, South Africa's linefishery was declared to be in a state of emergency, and commercial fishing effort was consequently reduced by 70%. A subsequent increase in stock biomass and intraspecific competition, coupled with environmental changes, were hypothesised to have thereafter altered the growth rate of hottentot, from 2000 to 2010. This study aimed to revise outdated age–growth models for the hottentot by using modern techniques (sectioned otoliths), and to compare age–growth relationships before and after the declared linefish state of emergency. The maximum age observed was 19 years, with no difference in the growth rate between sexes (p = 0.39–0.43) or time-periods (p = 0.96). Although the growth rate did not change, there is evidence that the age structure of the stock changed between time-periods as a result of changes in fishing pressure between 2000 and 2010. The enhanced recent growth model for hottentot, described as Lt = 418.063 (1 – e?0.104(t – [?4.709])) (pooled sexes; n = 206), indicates a considerably slower growth rate for this species than was proposed previously using whole otoliths and has major implications for effective stock management.  相似文献   

14.
ABSTRACT

An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a large-diameter variable-section pile, and it considers the radial inhomogeneity of the surrounding soil caused by construction disturbance. First, the saturated soil surrounding the pile is described by Biot’s poroelastic theory and a series of infinitesimally thin independent layers along the shaft of the pile, and the pile is represented by a variable-section Rayleigh–Love rod. Then, the dynamic equilibrium equations of the soil and pile are solved to obtain an analytical solution for the impedance function at the pile top using the complex stiffness transfer method and impedance function transfer method. Finally, the proposed solution is compared with previous solutions to verify its reliability, and a parameter study is conducted to provide insights into the sensitivity of the vertical dynamic impedance of the pile and velocity response in low-strain integrity testing on defective piles.  相似文献   

15.
An experimental investigation was made into the response of piles in sand subjected to lateral cyclic loading. Seven instrumented model piles tests were conducted. Five tests were conducted under typical magnitude and number of cyclic loading, and two were under static loading. The results were used to deduce modulus of subgrade reaction k and the profile of limiting lateral resistance force per unit length (LFP, pu profile) in light of closed-form solutions. The study demonstrates a large impact of lateral (cyclic) load level than the number of cycles, a 1.5–2.8 times increase in the modulus k, and a 10% reduction in the pu due to cyclic loading. The tests confirm the linear correlation between maximum bending moment and the applied lateral load, regardless of the number of cycles.  相似文献   

16.
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case I: pipe is laid above seabed and Case II: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e0/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of Vr for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e0/D (−0.25<e0/D<0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio.  相似文献   

17.
A beach profile equilibrium model for perched beaches is presented. The model assumes that wave reflection at the seaward and leeward sides of the breakwater is the most important process that modifies Dean's equilibrium profile model for non-perched beaches. The influence of wave breaking over the submerged structure is also discussed. Several laboratory data sets are used to analyze the merit of the proposed model for describing the equilibrium condition of a perched beach. A good comparison is obtained. Results show that if the ratio between the water depth above the submerged structure, d, and the water depth at the toe of the structure, he, is large, d/he>0.5, only minor advance of the shoreline is achieved with the construction of a toe structure. A considerable advance is obtained for d/he less that 0.1. In these situations, however, resonant effects may result in an inefficient structure. The proposed model is used to provide an estimation for the required sand volume and the associated beach advance for the case of narrow breakwaters.  相似文献   

18.
This study focuses on the evaluation on deformation induced by periodic saturation of a sandstone–mudstone particle mixture. Two types of triaxial tests, without and with periodic saturation, were performed. The strain–stress relationships from the two types of tests indicate that the periodic saturation may induce an increment of axial strain (Δε), and the Δε values are related to the ratio of confining to atmospheric pressure (σ3/pa), stress level for periodic saturation (L), and number of periodic saturation or cycles (N). The values of Δε are increasing along logarithmic curves with increment of N value from 1 to 20, and increase along straight lines with increasing L value from 0.18 to 0.82 or σ3/pa value from 1 to 4. Based on the analyses of experimental data, a logarithmic fitting equation, which is a function of N, L, and σ3/pa, is suggested to predict the Δε value. And based on the fitting equation and simple analyses on stress state, another equation, which may be used to estimate the settlement induced by periodic saturation of a large-area foundation filled using the sandstone–mudstone particle mixture, is also suggested.  相似文献   

19.
Granular piles are frequently used as a method of improving soft grounds as they provide increased bearing capacity and reduce foundation settlements. However, in very soft clayey soils, they may not derive their load-carrying capacity by low confining pressure provided by the surrounding soil. In such circumstances, granular piles may be reinforced with suitable geosynthetic to increase its load-carrying capacity and to reduce excessive bulging. In this study, the performance of small group of geosynthetic-reinforced granular piles (GRGPs) is examined in terms of load-carrying capacity, settlement, and modulus by laboratory model tests. The parameters investigated include modulus of reinforcement material, area replacement ratio (ARR) based on the column diameter and reinforcement length. The results indicated that increasing the modulus of the reinforcement and the ARR based on the column diameter enhances the overall performance of the GRGP group. It was also observed that reinforcement on top portion of the granular pile is sufficient to substantially increase the load-carrying capacity of granular pile group.  相似文献   

20.
工程中常涉及到地基承载力特征值fa及桩端阻力qpa,作为同量纲的地基指标,对同一土层后者往往要比前者高得多。运用梅耶霍夫地基极限承载力理论,分析了随基础埋深的加大地基土破坏形式的变化,对浅基础及桩基础破坏形式、地基承载力特征值fa与桩端承载力特征值qpa作了对比。研究结果将有利于建立及区别地基承载力特征值及桩端端阻力特征值的物理概念,对实际工程具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号