首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Abstract

The suction anchor becomes more popular for offshore oil and gas industry in deeper water. For suction anchor–soil interaction, the prediction of hydraulic conductivity of porous materials is a long-standing problem in offshore engineering. To investigate the hydraulic characteristics, an upward seepage flow through saturated sands is considered in this study. A numerical approach, which is able to describe the fluid–particle interaction at particle scale, has been employed to analyse fluid flow in sands. This approach is constructed by adopting a coupled discrete element method and computational fluid dynamic approach (CFD-DEM numerical model). The coupled CFD-DEM approach is first benchmarked by a classic geomechanics problem where analytical solutions are available, and then employed to investigate the characteristics of upward seepage flow in coarse sand columns. Through numerical modelling, the predicted relation between hydraulic gradient and flow velocity is obtained and it is compared with the classical analytical correlation. The effect of several bulk and micromechanical parameters including packing porosity, particle size combination and inter-particle rolling resistance on the flow characteristics is numerically examined. The results show that the particle polydispersity and packing porosity have significant effect on the hydraulic conductivity in the seepage flow. The introduction of inter-particle rolling resistance can change initial packing structure of particle assembly in some extent rather than the hydraulic conductivity from the particle shape effect perspective. A further development of numerical model, in which the effect of non-spherical particles on the seepage flow, will be carried out later.  相似文献   

2.
Hydraulic conductivity of the granular soils depends on many factors including the soil density and the particle size distribution. For internally unstable soils, the hydraulic conductivity could be changed beyond a critical value of hydraulic gradient. This discussion calls attention to the effect of the internal stability on the hydraulic conductivity, where the internal stability of the soils is assessed and the critical hydraulic gradient is computed using some theoretical methods, and such calculations could be used to plan the experimental tests.  相似文献   

3.
Abstract

Sporosarcina pasteurii (ATCC 11859) is a nitrogen-circulating bacterium capable of precipitating calcium carbonate given a calcium source and urea. This microbially induced carbonate precipitation (MICP) is able to infill inter-granular porosity and act as a biological clogging agent, thus having a wide potential application in strengthening coastal foundations, preventing erosion by seas and rivers and in reducing sand liquefaction potential in coastal areas. A successful MICP application requires the understanding of the primary parameters that influence the microbially mediated process to achieve its engineering goals, such as injection scheme, chemical concentrations, retention times, and injection rates. However, the granular morphology has generally been oversimplified to ideal shape without enough consideration in previous studies. The following explores the critical micro-scale influence of particle morphology on mechanisms of microbially induced clogging. Spherical, non-spherical and angular particles were used as granular aggregates in permeating column experiments with the resulting permeability and calcium carbonate content of the treated aggregates examined. Microscopic examination (SEM) defines the features of the distribution of microbially precipitated calcium carbonate and the forms of clogging. The results show: (1) given a fixed duration of treatment, the calcium carbonate content for the spherical particle aggregate is significantly higher than that for near-spherical and angular particle aggregates; (2) for identical durations of treatment, the maximum permeability reduction occurs for angular particles (rather than for spherical particles with the highest carbonate content). This suggests that the microscopic distribution of calcium carbonate is significantly influenced by particle morphology, exerting a critical control in the effectiveness of clogging. SEM images indicate that the microbial calcium carbonate precipitates encapsulate the spherical particles as a near-uniform shell and occlude the pore space only by increasing the shell thickness. In contrast, the near-spherical and angular particles are only partially coated by a calcium carbonate film with scattered crystals of vaterite and calcite further clogging the void space. The polyhedral nature of the non-spherical particles tends to result in a slot-shaped pore structure which critically defines the hydraulic conductivity of the ensemble medium. As the microbial vaterite and calcite continue to accumulate on the particle surface, these slot-shaped pore structures become increasingly more tortuous – resulting in a noticeable reduction of permeability at a lower calcium carbonate content.  相似文献   

4.
Abstract

This study aims to evaluate the relationship between saturated hydraulic conductivity with particle shape and packing density characteristics of silty sand soils. The article presents a series of hydraulics tests performed on three kinds of sand with different particles shapes (Chlef rounded sand, Fontainebleau sub-rounded sand and Hostun sub-angular sand) mixed with low plastic rounded Chlef silt in the range of 0–30% fines content. The sand–silt mixture samples were tested in the constant-head permeability device at a loose relative density (Dr = 18%) and a constant room temperature (T?=?20?°C). The obtained results indicate that the measured saturated hydraulic conductivity (Ks) correlates very well with the fines content (Fc), packing density in terms of [maximum void ratio “emax,” minimum void ratio “emin,” predicted maximum void ratio “emaxpr and predicted minimum void ratio “eminpr] and particle shape characteristics ratios in terms of roundness ratio (Rr = Rhs/Rmixture) and sphericity ratio (Sr = Shs/Smixture) of the silty sand materials under consideration. Moreover, the analysis of the available data show a noticeable success in exploring the prediction of the saturated hydraulic conductivity (Ks) based on the particle shape and packing density characteristics (Rr, Sr, emax, and emin) of the studied sand–silt mixture samples.  相似文献   

5.
在研究海岸侵蚀的过程中,泥沙沉速是一个重要参数,对于侵淤量的计算非常重要。近些年来,由于工程活动、海洋动力和气候等因素变化的影响,珊瑚砂海岸的侵蚀冲刷问题已不容忽视。考虑到珊瑚砂与石英砂在形状、比重上的不同会对其沉速造成影响,套用现有石英砂的沉速公式进行计算并不合适。本文针对珊瑚砂和石英砂进行沉降试验,分析形状对珊瑚砂沉速的影响。结果显示,在小粒径(d 0.5 mm)下形状对珊瑚砂沉速的影响并不明显,在大粒径(d 0.5 mm)下明显减缓了珊瑚砂的沉降速度,套用石英砂的沉降公式计算出的珊瑚砂沉速明显偏大。故通过提出动力形状因子这一参数来表征形状对沉降的影响,推导出考虑了形状影响的沉降公式,能够较为准确地计算砂粒的沉速范围,计算精度随着黏度的增大而提升。  相似文献   

6.
A closure is presented to the discussion of Anisotropic hydraulic conductivity and critical hydraulic gradient of a crushed sandstone–mudstone particle mixture by Salahou, Jiao, and Yousif (2017 Fener, M., and N. Yesiller. 2013. Vertical pore structure profile of a compacted clayey soil. Engineering Geology 166:20415. doi:10.1016/j.enggeo.2013.08.001.[Crossref], [Web of Science ®] [Google Scholar]). The relationship between the critical hydraulic gradient and the uniformity coefficient can be limited to two curves. The internal erosion mechanism of soils with different particle grade curves is different. The maximum diameter of fine particles of different particle grade curves can be calculated by a lot of methods. The density of the original paper is the average density. The anisotropic hydraulic conductivity is caused by uneven density distribution. The hydraulic conductivities are tested on the saturated soils. The saturated hydraulic conductivity can be regard as a constant value for a saturated soil.  相似文献   

7.
Abstract

Construction of the reefs in the South China Sea is a significant foundation to the secure stability and economic development of China. The construction of an airport runway is necessary for this realization. The calcareous sand is the main primary material in the runway construction. A certain type of calcareous sand near a certain reef of the South China Sea was studied in this paper. To investigate this specific calcareous sand, quartz sand was used as a reference for comparison. Microscopic 3-D imaging, compression and triaxial tests were conducted to test the micro, squeezing and shear properties. The effect mechanism of gradation on the calcareous sand’s compressibility and shear characteristics are discussed from a mesoscopic viewpoint using 3-D morphology. Calcareous sand particles are multiangular and flatter in comparison with quartz sand. The larger the particle sizes are, the more different the two sands’ morphologies are. The compressibility of calcareous sand is greater, and the effect of the coarse fraction (5–1?mm) content in the gradation plays the most significant role in this feature. When the coarse particles’ content is less than 25% and the mass ratio of the middle and fine particles (M) is constant, there is the worst coarse fraction content causing the calcareous sand to be most likely compressed. The worst coarse fraction content decreases with the increase in M, and an empirical formula is proposed. When the gradation, relative density and confining pressure are the same, the peak shear stress and strain of calcareous sand are all at a high level. The effect of confining pressure is manifested in calcareous sand. The shear strength and dilation of calcareous sand are also most affected by the medium coarse fraction (5–0.25?mm) content.  相似文献   

8.
Vertical uplift static loading tests of single model pile were conducted in the in-lab calcareous sand and quartz sand by emulating practical condition of full-size piles in site. The settlement, lateral deflection, axial force, and friction distribution of the pile are analyzed for each physical test. The pile behaviors in calcareous sand and quartz sand are compared. From the test results, it can be found that the pile top displacement of uplift pile in calcareous sand can be divided into two stages: the pile–sand synchronous stage and pile–sand asynchronous (relative displacement) stage. Data from uplift tests show that the heave of calcareous sand around pile top is very small, which is resulted from the mutually restraint of surface particle. The mutual restriction of surface particle leads to “bottleneck effect” and strengthens ultimate side friction of upper pile segment. In addition, the shear dilatancy and particle breakage of calcareous sand lead to the upper harden and the lower soften of side friction, respectively. Cases of calcareous sand and quartz sand show different responses to pile forming methods, which due to the sands’ different characteristics of particle breakage when compressed as well as plastic deformation under loading–unloading conditions.  相似文献   

9.
Chen  Jie  Yao  Zhen  Jiang  Chang-bo  Wu  Zhi-yuan  Deng  Bin  Long  Yuan-nan  Bian  Cheng 《中国海洋工程》2022,36(5):720-733

The motion of particle clouds (i.e., sediment clouds) usually can be found in engineering applications such as wastewater discharge, land reclamation, and marine bed capping. In this paper, a series of laboratory tests are conducted on coral sand to investigate the shape feature of the single particle and the mixing processes of the coral sand particle clouds. The shape of coral sand particle is measured and quantified. The experimental results demonstrate that the shape of coral sand particles tends to be spherical as the particle size decreases, and empirical equations were established to explain the variation of D50 and fS,50 of coral sand. Compared with the silica sand, the evolution of the coral sand particle cloud still experiences three stages, but the threshold for the Reynolds number of particle clouds entering the next stage changes. Further, the normalized axial distance of the coral sand particle clouds is 58% smaller. The frontal velocity exhibits similar varying tendency for the coral sand particle cloud. Considering the difference in shape between coral sand particles and silica sand particles, a semi-empirical formula was proposed based on the original silica sand prediction formula by adding the shape factor and the experimental data of 122 µm⩽D50⩽842 µm. It can predict the frontal velocity of the coral sand particle clouds.

  相似文献   

10.
11.
A discussion is presented here to the work of Wang and Qiu including some notes about the analysis and the correlations of the results. First, we show that there is no clear relationship between the critical hydraulic gradient and the uniformity coefficient. Also we show that the internal erosion mechanism of soils with bimodal structure is different from that for soils with no bimodal structure. Finally, we emphasis that the anisotropy in the hydraulic conductivity is not related to the uneven compaction only but also to the particle arrangements and connectivity between pores.  相似文献   

12.
河北昌黎黄金海岸是我国海岸沙丘的集中分布区,选择其中形态典型的新月形沙丘,分不同部位采集了42个沙丘表面沉积物粒度样品,通过对采集样品粒度及其参数的分析与计算,研究了其表面粒度分异。结果表明,昌黎黄金海岸新月形沙丘两翼、迎风坡脚、迎风坡、沙丘顶部、背风坡、背风坡脚的粒度总体上是中砂、分选好、偏度近对称和中等峰态,只有平均粒径在新月形沙丘表面的不同部位存在一定的差异,自迎风坡脚到沙丘顶部粒径变粗,背风坡粒径相对变细,到背风坡脚粒径又变粗,整个沙丘表面粒径顶部最粗、背风坡最细,其分布可以归入沙丘顶部砂物质最粗的分布模式。该粒度分布模式是本区域主风向与强风向交替变化及其风力差异、沙丘两侧不对称和凹型迎风坡形态等组合作用的结果。  相似文献   

13.
Abstract

Rock drilling is a significant activity widely used in the exploration of marine mineral resources and offshore civil engineering such as marine mining, petroleum and deep-water drilling. The characteristics of size and shape of particles produced during rock drilling influence drilling efficiency and energy consumption. We report a series of drilling experiments on sandstone, limestone and shale to systematically examine particle size distribution and shape and correlate these with original rock structure and composition. Correlations are established via metrics of particle size distribution, average circularity and specific surface area. Impact breakage and contact abrasion of individual particles during rock drilling are the main mechanisms controlling particle size and shape. Impact breakage is controlled by the structural distribution of mineral phases, while contact abrasion is principally related to the hardness of mineral phases. The particle size distribution is affected by the structural distribution of mineral phases. The average circularity of the drilling particles is mainly controlled by the hardness of mineral phases. The specific surface area of rock drilling particles is determined by both structural distribution and hardness of mineral phases – with homogeneous structure and low average hardness of the phases reducing the resulting specific surface area of the drilling products.  相似文献   

14.
河口海岸沉积动力环境复杂,沉积物粗细组分皆有。对于粗细混杂(同时含有砂砾质和泥质成分)的沉积物样品,单一的粒度分析方法不能覆盖整个粒度分布范围,常采用激光-筛分联合法进行粒度分析。由于两种方法的分析原理不同,经常出现细部的激光法结果与粗部的筛分结果部分重合现象,这会影响整个样品的粒度分布计算。石油天然气行业标准《碎屑岩粒度分析方法》(SY/T 5434-2018)对此问题给出了新的解决方案,但是只有文字描述,没有可操作的计算方法。本研究根据该行业标准提出的方案,推算出激光-筛分联合法粒度分析结果的修正计算公式。以浙江舟山群岛潮间带197个粗细混杂样品为例,采用激光-筛分联合法进行了粒度分析,分别采用直接拼接算法及SY/T 5434-2018算法计算了粒度分布,在此基础上对两套算法所得组分含量和粒度参数进行了比较。结果表明,SY/T 5434-2018算法相较于直接拼接算法,扩大了粗颗粒的体积百分比,减少了细颗粒的体积百分比。两种算法得到的组分含量具有显著的线性相关关系,且砾、砂、粉砂、黏土等组分含量的差异从粗到细依次减少。用两种算法的结果分别计算粒度参数,同样具有显著的线性相关关系,且...  相似文献   

15.
This study was performed to evaluate the critical state parameter of crushable Jeju sand and to suggest the relationship between the state parameter and cone resistance of Jeju sand. It is observed from a drained triaxial test that Jeju sand mainly shows contractive behavior due to high void ratio and large compressibility. Although strain localization is not evident, the particle crushing results in a lower void ratio than the critical state void ratio of some Jeju specimens. Critical state parameters of Jeju sand are similar to those of calcareous sands, but significantly larger than those of common sands. The relationship between the normalized cone resistance and state parameter of Jeju sand significantly differs from that of other materials, and this relation appears to be affected by the stress level. This is because the variation of stress level affects the state parameter of Jeju sand more significantly than that of common sand due to the high compressibility of Jeju sand.  相似文献   

16.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

17.
To provide a better understanding of sedimentary basin geological history, it is important to describe correctly the evolution of the various physical, mechanical and hydraulic properties of clayey rocks as a function of burial depth. As a contribution to this field, a programme of experimental studies on reworked clay samples compacted under various load pressures in oedometric conditions has been set up. The evolution of samples under compaction was followed with microscopic and macroscopic measurements. In a specially designed oedometric cell, samples are compacted under different total stresses from 0.1 to 50 MPa. In this cell, cylindrical cores are submitted to progressive loading from both ends under controlled pore pressure conditions. The symmetrical loading allows more even deformation about the midplane of the sample. This device allows the evolution of hydraulic pressure, radial stress, displacement and expelled pore fluid to be followed as a function of time. In a first step, kaolinite was chosen because it retains a high permeability (compared with other clays such as illite or smectite), which allows compaction tests to be performed within a few days. A complete set of measurements was performed after the tests. These measurements are: (1) micro-structures investigated by means of transmission electron microscopy (TEM), mercury porosimetry, water removal under low water vapour pressure, granulometry and specific area measured by ethylene glycol adsorption; and (2) various physical parameters measured including hydraulic conductivity and thermal conductivity. TEM gives an understanding of the arrangement of particles. It was found that each particle is composed of several crystal units, each unit formed by ≈25 individual kaolinite layers. During compaction, these particles remain undeformed, but are rotated. The angular distribution of grain orientation is a function of the applied effective stress. This reorientation is in agreement with the observed decrease in porosity and pore size. It also explains the occurrence of a strong anisotropy in the thermal conductivity and hydraulic permeability. The combination of these experimental results allows a qualitative and quantitative understanding of the behaviour of kaolinite with respect to parameters such as permeability, porosity, mechanical and thermal properties, the knowledge of which are necessary for basin modelling.  相似文献   

18.
The characterization of trophically and geochemically important suspended particulate matter (SPM) has traditionally relied on bottle sampling and subsequent analysis with Coulter Multisizers and other instruments, which are not sufficient in preserving the in situ size, shape and composition of aggregated particles. The small volume particle microsampler (SVPM) is a sampling device that captures individual particles on filters with minimal disturbance for microscope image analysis of size distribution and composition. Sand grains, microalga (Dunaliella tertiolecta) and laboratory cultivated flocs were used to test the SVPM's ability to determine particle size. For statistical analysis of the SVPM's capabilities, sand grain and algal size distribution, calculated as equivalent spherical diameter (ESD), were compared to Multisizer data while video images provided a comparison for the flocs. Non-aggregated sand particles sampled by the SVPM showed a size distribution that was similar to that of the Multisizer. Aggregated D. tertiolecta flocs were broken up by the Multisizer, and SVPM data indicated a significantly greater mean ESD. The SVPM showed significantly smaller mean ESDs than the video images because of the higher resolution of the sampler for small particles. In terms of particle concentration, the microsampler measured values similar to those of the Multisizer and video camera. The most important feature of the SVPM is its ability to capture aggregates for the analysis of composition, by histological stains or other means. The SVPM is an alternative method of sampling that is more effective in preserving aggregates for laboratory analyses and is less complicated and expensive than in situ optical sampling techniques, especially in documenting the lower end of the particle size spectrum.  相似文献   

19.
The design of sand mats should be reviewed on the basis of excess pore pressure behavior, which can be obtained by combining the characteristics of soft ground with the permeability of the mats. In this study, a banking model test was performed using dredged sand as the mat material to investigate the hydraulic gradient distribution of sand mats. The results were compared with numerical analysis results utilizing Terzaghi's one-dimensional consolidation equation. The results showed that the pore pressure was influenced by an increase in the amount of settlement at the central part of the sand mat as the height of the embankment increased. The measured decrease of the pressure head due to the residing water pressure in the sand mat was delayed compared to the numerical analysis results. Accordingly, sand mats should be laid to reduce the increased hydraulic gradient at the central part of the embankment.  相似文献   

20.
ABSTRACT

Biogrouting, which is a new method for soil improvement, was used in an attempt to cement a type of hydraulic fill fine sands (called black sands) in reclamation projects in Tianjin, China, to form a working layer for mechanical equipment. Several factors influencing biogrouting with regard to cementing solution, including injection frequency, reaction time, concentration, and flow rate, were controlled to prepare black sand columns. This paper reports on an investigation of bacterial fixation, calcium ion utilization, and calcium carbonate distributions of biogrouted sand specimens. At the end of the tests, the geotechnical performances of the sand specimens were determined. The results showed that the biogrouting method effectively solidified black sands, by increasing the unconfined compressive strength of a sand column to 1.91?MPa and reducing the permeability coefficient by three orders of magnitude. A relationship between the unconfined compressive strengths and calcium carbonate contents was put forward, in addition to a relationship between the permeability coefficients and the calcium carbonate contents. According to the experimental results, some reasonable suggestions regarding the application of biogrouting to the consolidation of hydraulic fill fine sands in reclamation projects were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号