首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

2.
The results of one-dimensional compression tests conducted on undisturbed specimens of Jiangsu soft marine clay is presented. Because of its high in situ void ratios and natural water content, Jiangsu soft marine clay displays high values of both the virgin compression index, Cc, and the secondary compression coefficient, Cα. The laboratory data indicates that the value of the ratio Cα/Cc for Jiangsu soft marine clay is constant. However, neither Cα nor Cc are constant: they both depend upon the natural water content (or void ratio) and thus are also dependent on the deformation (or compression) of Jiangsu soft marine clay. Settlement analyses show that the secondary settlement of Jiangsu soft marine clay is a significant component of the field settlement. The concept of a constant value for Cα/Cc is used to predict the secondary settlement of a surcharged embankment founded upon Jiangsu soft marine clay. The predictions are in agreement with the limited post-construction field measurements of the embankment settlement.  相似文献   

3.
细菌源3-羟基脂肪酸(C10–C18)作为环境变化指示指标具有良好的应用前景,但相关研究还很不系统,在海洋环境中的应用刚刚起步。3-羟基脂肪酸主要用于环境中pH和温度的重建,通过其支链比(异构和反异构3-羟基脂肪酸之和/正构3-羟基脂肪酸之和)与pH的显著正相关关系反演环境中的pH,通过其C15和C17同系物的反异构/正构比(RAN15和RAN17)与大气年均温的显著负相关关系反演环境中的温度,相比基于GDGT或其他生物标志物的环境代用指标具有明显的优势。然而,陆地生态系统中基于3-羟基脂肪酸的环境指标不适用于海洋环境,最新研究提出了基于3-羟基脂肪酸的新的海洋温度指标(RAN13),而3-羟基脂肪酸作为海洋环境中pH替代指标的成功应用尚未见报道。3-羟基脂肪酸与特定细菌群落的空间耦合或菌株培养实验显示含有3-羟基脂肪酸的细菌可能主要是变形菌、蓝细菌等。分析表明,3-羟基脂肪酸作为全球环境演变有效的替代指标需要更多的数据和证据支持,未来可从海洋适用性、新指标体系和微生物来源几个方面展开继续研究。  相似文献   

4.
Cement and lime are widely employed in soil and sediment treatment for an improvement of geotechnical properties, such as an increase in mechanical strength which enables beneficial use in various geotechnical applications. In this study, fine organic-rich dredged harbour sediments of 120% relative water content were treated with dry cement at contents varying between 2% and 10% of bulk sediment wet weight. Tests based on assessments of one-dimensional compression and Atterberg limits were performed on untreated and cement-treated sediments for various curing periods, as well as grain-size, SEM and X-ray diffraction analyses. The results confirm that increasing the cement content improves the geotechnical properties of these harbour sediments. Already in the early phase of curing (first 3 days of curing), particle size increases while sediment plasticity decreases. Changes in the compressibility behaviour include an increase in apparent preconsolidation pressure, in the compression index C c and in the primary consolidation coefficient C v, and a decrease in the secondary compression index . This means that the new materials are characterized by a behaviour intermediate between that of fine and that of coarser soils.  相似文献   

5.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

6.
The particulate beam attenuation coefficient (cp) is proportional to the concentration of suspended particles in a size domain overlapping that of the phytoplankton assemblage. cp is largely insensitive to changes in intracellular chlorophyll concentration, which varies with growth irradiance (a process termed ‘photoacclimation’). Earlier studies have shown that the ratio of cp:chlorophyll (i.e., cp*) exhibits depth-dependent changes that are consistent with photoacclimation. Similar relationships may likewise be expected in the horizontal and temporal dimensions, reflecting changes in mixing depth, incident irradiance, and light attenuation. A link between cp* and more robust photoadaptive variables has never been explicitly tested in the field. Here we use five historical field data sets to directly compare spatial and temporal variability in cp* with two independent indices of photoacclimation: the light-saturated, chlorophyll-normalized photosynthetic rate, Pbopt, and the light-saturation index, Ek. For the variety of oceanographic conditions considered, a first-order correlation emerged between cp* and Pbopt or Ek. These simple empirical results suggest that a relationship exists between a bio-optical variable that can potentially be retrieved remotely (cp*) and physiological variables crucial for estimating primary productivity in the sea.  相似文献   

7.
ABSTRACT

The aim of this experimental study is to estimate the maximum shear modulus (Gmax) of normally consolidated clayey soils using the results of a dilatometer test (DMT). A series of DMTs was conducted at the Busan New Port and Noksan sites in South Korea. In addition, basic index tests, bender element tests (i.e., shear wave velocity (Vs) measurements), and standard 1-D consolidation tests were performed using the undisturbed specimens. The results demonstrate that the Gmax of normally consolidated Busan clays cannot be adequately captured by the horizontal stress index (KD)-based empirical formula. Therefore, a Gmax estimating formula for normally consolidated clayey soils is newly suggested in this study using the dilatometer constrained modulus (MDMT) and stress-normalized material index (ID). Most notably, the estimated Gmax values using the suggested formula are comparable with the measured Gmax of both this study and the previous study on normally consolidated clayey soils.  相似文献   

8.
9.
Abstract

In the present scenario, with much focus on sustainable development worldwide, Microbially Induced Calcite Precipitation (MICP) is a promising biological soil improvement technology. However, only very limited research is reported on the effectiveness of this technique in marine clays. This paper presents the salient features of an experimental study conducted on two typical marine clays stabilised by MICP. Effectiveness of the technique was evaluated through a series of one-dimensional consolidation tests, unconfined compression tests, and index property determinations. It is found that biostimulation approach is not effective in marine clay; bio-augmentation is needed for soil improvement. Bio-augmentation results in the reduction of liquid limit and plasticity index to about 29% and 47%, respectively for the marine clays. A comparable improvement in volume change behaviour is also observed. There is a marked increase in undrained shear strength, upto about 148%, of MICP treated marine clays at toughness limit water content. Curing is also found to have a significant role in soil improvement. The observed transition in the nature of the tested marine clays from that of fat clay to elastic silt suggests the potential of the proposed approach. An empirical equation is also proposed to predict compression index of MICP treated marine clays.  相似文献   

10.
The present study focuses on the compressibility and permeability characteristics of a crushed sandstone–mudstone particle mixture (SMPM). Two type of laboratory tests, which are compressibility–permeability test (CPT) and compressibility test only (CTO), are performed. Based on the test data, the effects of the seepage action on the compressibility and ones of the void ratio (e) on the permeability are analyzed. The rate of consolidation of the crushed SMPM is also discussed. The values of compressibility index (Cc) obtained from the CPT are greater about 1.32–4.81% than ones obtained from the CTO, but the values of preconsolidation stress (σp) obtained from the CPT are smaller about 2.34–9.83% than ones obtained from the CTO. The slope of fitting line of e~logK (where K is the coefficient of permeability, and log is the logarithm to base 10), defined as the permeability index (Kc), ranges from 0.146 to 0.337 with an average of 0.226. The value of Cc/Kc, used to evaluate the rate of consolidation, ranges from 0.905 to 1.250 with an average of 1.031. The rate of consolidation of the crushed SMPM may be analyzed by Terzaghi’s theory due to the average value of Cc/Kc very close to 1.0.  相似文献   

11.
Abstract

The present study aims to assess whether the smectite‐rich Cochin and Mangalore clays, which were deposited in a marine medium and subsequently uplifted, exhibit consistency limits response typical of expanding lattice or nonexpanding (fixed) lattice‐type clays on artificially changing the chemical environment. The chemical and engineering behaviors of Cochin and Mangalore marine clays are also compared with those of the smectite‐rich Ariake Bay marine clay from Japan. Although Cochin, Mangalore, and Ariake clays contain comparable amounts of smectite (32–45%), Ariake clay exhibits lower consistency limits and much higher ranges of liquidity indices than the Indian marine clays. The lower consistency limits of the Ariake clay are attributed to the absence of well‐developed, long‐range, interparticle forces associated with the clay. Also, Ariake clay exhibits a significantly large (48–714 times) decrease in undrained strength on remolding in comparison to Cochin and Mangalore clays (sensitivity ranges between 1 and 4). A preponderance of long‐range, interparticle forces reflected in the high consistency limits of Cochin and Mangalore clays (wL range from 75 to 180%) combined with low natural water contents yield low liquidity indices (typically <1) and high, remolded, undrained strengths and are considered to be responsible for the low sensitivity of the Indian marine clays.  相似文献   

12.
Based on the geotechnical investigation data of artificial island at Dalian Offshore Airport, the spatial distribution of the physical and mechanical properties of deposit soils was statistically analyzed. The field investigation revealed that the deposit soils could be subdivided into three strata, i.e., the top marine deposit stratum, middle marine-continental deposit stratum, and deep continental deposit stratum. Field and laboratory test results demonstrated that the marine deposit soils had high water content (31.2% < wn < 63.10%), large void ratio (0.88 < e0 < 1.75), low permeability (kv < 10?6 cm/s), flow-plastic state (IL > 1), under consolidated (OCR < 1), high compressibility (Es < 4 MPa), low shear strength (11.7 kPa < cu < 43.7 kPa), and low bearing capacity (0 < fak < 120 kPa), they could not be used as natural foundation. The marine-continental and continental deposits were normally consolidated to over-consolidated (OCR ≥ 1), medium compressibility (4 MPa < Es < 20 MPa), high shear strength (29.7 kPa < cu < 73.7 kPa), and high bearing capacity (fak > 120 kPa). In addition, regression analysis results showed that the compression ratio was positively correlated with the natural water content, the coefficient of vertical consolidation was negatively correlated with the plasticity index, and the coefficient of vertical permeability was positively correlated with the initial void ratio. The results of the field and laboratory tests were synthesized to provide a basis for reclamation design.  相似文献   

13.
ABSTRACT

This article presents a testing study on the strain-rate effects on the stress--strain behavior of natural, undisturbed Hong Kong marine deposits (HKMD) from three Hong Kong locations, including a one-dimensional (1-D) compressibility in a confined condition, and undrained shear strengths in triaxial compression and extension modes. The influences of the strain rates on the one-dimensional compressibility are studied by means of constant rate of strain (CRS) tests and multistage loading oedometer (MSL) tests, and those on the undrained shear strengths are studied by K o-consolidated undrained compression and extension tests with step-changed axial strain rates (CK oUC and CK oUE tests), and with both step-changed axial strain rates and relaxation processes (CK oUCR and CK oUER tests). The strain-rate effects on the stress--strain behavior are generally examined by “apparent” preconsolidation pressures in the 1-D compressions and undrained shear strengths in the triaxial compression and extension stress states. The stress--strain behavior of the natural, undisturbed HKMD exhibits considerable viscous characteristics. In the CRS and MSL tests at a given strain, the higher the strain rate, the higher the effective stress, the higher the porewater pressure. In the undrained shearing tests, the higher the strain rate, the higher the undrained shear strength, but the lower the porewater pressure. For the CK oUC and CK oUE tests on the Tsing Yi site samples, the undrained shear strength increases by 8.5% and 12.1% for one order increment of axial strain rate of 0.2%/hr (i.e., ρ0.2) for the compression and extension modes respectively. For the CK oUCR and CK o tests on the Tung Chung site samples of different compositions, average ρ0.2 is increased by 6.2% for the compression and 9.5% for the extension, but by 18.8% for the extension on a higher plastic sample. The present study shows that the strain-rate effects on the stress--strain behavior of the undisturbed HKMD are larger for specimens in extension than those in compression.  相似文献   

14.
Abstract

Vacuum preloading with plastic vertical drains has been applied widely to accelerating consolidation of dredger fills. As a result of nonlinear variations in permeability and compression during the process of dredger fill consolidation, an axisymmetric consolidation method for dredger fill treatment using PVD with vacuum is proposed with varied Ru. The effects of Cc/Ck and the loading ratio on the proposed method are discussed. It is found that the difference between the traditional method and proposed method is obvious in the case of large loading ratio (such as dredger fill treated with vacuum preloading). The degree of consolidation in the early phase of consolidation obtained using the proposed method was less than that obtained using the traditional method and the degree of consolidation in the later phase of consolidation obtained using the modified expression was larger than that obtained using the traditional method, as Cc/Ck?<?1. However, opposite trends were observed when Cc/Ck?>?1, the proposed method was closer to the actual situation. The applicability of the proposed method was verified by laboratory and field tests. For the consolidation of dredger fill with high water content, we recommend the adoption of the proposed method for calculating the degree of consolidation.  相似文献   

15.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) Skempton, A. W. 1970. “The consolidation of clays by gravitational compaction”. In Q. J. Geol. Soc 373411.  [Google Scholar] for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990) Burland, J. B. 1990. On the compressibility and shear strength of natural clays. Gèotechnique, 40: 329378. [Crossref], [Web of Science ®] [Google Scholar]. When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8–1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

16.
Cement-stabilized clay is widely used in soft clay improvement for deep excavation, underground construction, and land reclamation. This paper presents a study on the evaluation of elastic modulus for cement-stabilized marine clay. First, two types of cement-stabilized soils were studied through isotropic compression tests and cylinder split tensile tests. Specimens with different mix ratios and curing periods were used. Stress–strain behavior under isotropic compression was discussed, followed by an introduction and estimation of the stress-free bulk modulus. Empirical correlations between elastic moduli and functions for estimating elastic moduli were then proposed. Further estimation of elastic modulus was conducted with another data set. The results showed that the proposed function for estimating elastic modulus is effective for cement-improved marine clay. Finally, the proposed method and empirical functions were validated with other types of cement-stabilized clay.  相似文献   

17.
Since existing empirical formulas have been proposed without clear verification of normality, they involve very high uncertainty in their design parameters. Therefore, in the present study, marine clay regions located in river estuary regions with deep soft layers were selected as study subject regions, the normality of those soil investigation data that were relatively highly reliable was verified, simple regression analyses of the data were conducted to propose prediction formulas, and the results from the prediction formulas were compared with the results from existing empirical formulas. Multiple regression analyses were conducted and the results indicated that regression models composed of GS, eo, LL were statistically significant in explaining compression indexes in both regions. It can be seen that the structures of the models presented in the present study changed depending on soil properties. In particular, because of diverse features of soil, GS had negative effects on CC in the case of Pusan while having positive effects on CC in the case of Kwangyang. In addition, the results of tests of equality between regional models rejected the null hypothesis indicating that parameters were statistically significantly different between the two regions.  相似文献   

18.
汪浩  何真  张婧  杨桂朋 《海洋学报》2018,40(10):96-109
运用吹扫-捕集气相色谱法测定了2017年夏季长江口及其邻近海域海水中4种常见的挥发性卤代烃(VHCs,包括一氟三氯甲烷(CFC-11)、碘甲烷(CH3I)、三氯甲烷(CH3CCl3)和四氯乙烯(C2Cl4))以及大气中CFC-11、CH3I和C2Cl4的浓度。结果表明,表层海水中4种VHCs浓度的水平分布受长江径流输入影响强烈,整体上呈现近岸高、远海低的趋势。垂直方向上4种VHCs浓度最高值出现在10 m水层,长江口内断面的浓度整体高于口外断面的浓度。海水中VHCs的浓度分布受水文环境、生物释放和人为因素等的共同影响。相关性分析表明CH3I与Chl a浓度不存在明显的相关性,而CFC-11与CH3I、C2Cl4浓度存在显著相关性(P<0.01),表明调查海域人为源对CH3I和C2Cl4的影响大于天然源。大气中CFC-11、CH3I和C2Cl4的浓度分布整体上呈现近岸高、远海低的趋势。CFC-11的浓度低于全球平均值,表明我国CFC-11的排放得到了有效控制。后向轨迹分析表明来自近岸的陆源污染物的扩散和输送是调查海域大气中3种VHCs的重要来源。CFC-11、CH3I和C2Cl4的海-气通量平均值分别为24.99 nmol/(m2·d)、7.80 nmol/(m2·d)、1.55 nmol/(m2·d),表明夏季长江口及其邻近海域是大气中这3种VHCs的源。  相似文献   

19.
On Physical and Mechanical Behavior of Natural Marine Intermediate Deposits   总被引:4,自引:1,他引:4  
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the nattwal marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same miles of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consohdated compression shear tests with simulated insitu confined pressure give results much better than those of uncomfined compression shear tests.  相似文献   

20.
Abstract

Cone resistance and laboratory strength measurements have been compared for stiff overconsolidated clays from five oil and gas fields in the North Sea. The clays considered are glacial in origin. The best agreement between cone resistance and laboratory strength is found by using an Nk factor equal to 17 in the formula

qc = Nk . Su + γZ.

The study shows that the cone gives highly reproducible results, whereas there is a considerable scatter in the laboratory strength determinations. When making use of CPTs for preliminary design, the authors recommend assuming an Nk of 15–20, depending on the type of problem under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号