首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
道路边界精确提取建模是城市道路管理、智能交通规划和高精度地图制作等领域的重要课题之一。本文提出了一种基于车载激光雷达点云数据和开源街道地图(OSM)的三维道路边界精确提取方法。首先,针对原始车载LiDAR点云数据应用布料模拟滤波分离地面点,再结合相对高程分析获取道路边界点候选数据集。然后,应用OSM矢量道路网数据的节点辅助道路边界点候选点集进行分段。最后,在各分段点云数据集中基于随机抽样一致性算法获得三维道路边界点集。通过直道、弯道及高密度复杂场景3种不同类型的城区道路边界路段分类提取试验。结果表明,利用该方法进行道路边界提取的准确率和召回率分别达96.12%和95.17%,F1值达92.11%,本文方法可用于高精度道路边界的三维精细提取与矢量化,进而为智能交通与无人驾驶导航提供支撑。  相似文献   

2.
为了解决现有裂缝识别算法准确度不高、检测与分割任务不能同时进行等问题,提出了一种基于改进型Mask R-CNN模型的路面裂缝识别方法。首先,建立裂缝数据集并进行标注,然后使用Mask R-CNN模型对裂缝数据集进行训练和测试,并对模型中锚点的长宽比进行调整,实现在裂缝定位的同时对生成的检测框内的裂缝像素进行分割;其次,针对Mask R-CNN模型生成的裂缝检测框不精准的问题,设计了C-Mask R-CNN多阈值检测方法,通过结合级联不同阈值的检测器来提高候选框质量,实现高阈值检测下的裂缝精准定位;最后,对改进后的模型进行一系列的优化参数和实验对比,并验证所提模型的有效性。实验结果表明,C-Mask R-CNN模型检测部分的平均准确率均值(mean average precision,mAP)达到0.954,与改进前模型相比提升了9.7%,分割部分的mAP达到0.935,与改进前相比提升了13.0%,识别效果较好。综上所述,C-Mask R-CNN模型可以较为完整地对裂缝进行定位及提取,识别精度较高。  相似文献   

3.
为解决遥感影像变化检测全局上下文信息捕获的问题,本文提出了基于孪生结构、跳跃连接结构及Transformer结构的TSU-Net。该模型编码器采用混合CNN-Transformers结构,借助自注意力机制捕获遥感影像的全局上下文信息,增强了模型对于像素级遥感影像变化检测任务的长距离上下文建模能力。该模型在LEVIR-CD数据集和CDD数据集进行测试,F1得分分别为90.73和93.14,优于各对比模型。  相似文献   

4.
车载激光扫描数据中实线型交通标线提取   总被引:1,自引:1,他引:0  
本文提出一种基于路面点云强度增强的车载激光点云实线型交通标线提取方法。首先通过预处理提取路面点云,获取各激光点与轨迹线的距离。然后逐段对路面进行强度增强,集合多滤波器集成的策略进行强度变换和去噪,消除距离、点密度、磨损等因素对反射强度值影响,增强路面点云和标线的强度差异。基于增强后的反射强度,采用k均值聚类和连通分支聚类等方法对标线进行分割,并利用归一化图割方法优化强度分割结果。最后利用实线型标线的语义信息和空间分布特征从分割后标线对象中识别实线型交通标线。试验采用四份不同车载激光扫描系统获取的数据用于验证本文方法有效性,实线型标线提取结果的准确率达到95.98%,召回率达到91.87%,综合评价指标F1-Measure值达到95.55%以上。试验结果表明本文方法能够有效增强受扫描距离、路面磨损及点密度分布不均等因素影响的点云强度信息,实现不同车载激光扫描获取的复杂道路环境下实线型交通标线的提取。  相似文献   

5.
地图在人们的生产生活中发挥着重要作用,地图注记中蕴含大量信息,识别地图名称注记类别对未来计算机阅读地图以及进一步绘制地图具有重大意义。近年来,热门的深度学习技术尤其是卷积神经网络对解决图像分类问题具有良好效果,使用训练集对卷积神经网络进行训练,神经网络模型可以提取出数据集图片中的特征,并不断调整模型参数直到训练完成。以谷歌的开源框架TensorFlow作为实验的深度学习平台,对多部地图集的多份注记数据集进行智能分类研究,从地图集中人工获取注记图片作为样本数据集,构建卷积神经网络模型并尝试混合训练和分开训练两种方式。实验表明,混合训练方式获得的模型表现更加出色。  相似文献   

6.
时空预测是地理时空大数据挖掘的基础研究命题。目前,多种模型用于预测未知系统的时空状态。然而,存在的大多数预测模型仅在没有缺失数据的时空数据集上进行测试,忽略了缺失值对预测结果的影响。在真实场景中,由于传感器或网络传输故障,数据缺失是一个不容忽视的问题。鉴于此,本文提出了一种顾及缺失值的因果图卷积网络(causal graph convolutional network considering missing values, Causal-GCNM)模型用于时空预测。Causal-GCNM模型可以自动捕捉时空数据中的缺失模式,使得Causal-GCNM模型在不需要借助额外插值算法的前提下,可以直接完成时空预测任务。本文提出的模型在3种真实的时空数据集(交通流数据集、PM2.5监测数据集及气温监测数据集)得到了验证。试验结果表明,Causal-GCNM模型在4种缺失条件(20%随机缺失、20%块状缺失、40%随机缺失及40%块状缺失)下仍然具有较好的预测性能,并在预测精度和计算效率两类指标上优于10种存在的基线方法。  相似文献   

7.
联合卷积神经网络与集成学习的遥感影像场景分类   总被引:1,自引:0,他引:1  
针对人工设计的中、低层特征难以实现复杂场景影像的高精度分类以及卷积神经网络依赖大量训练数据等问题,结合迁移学习与集成学习,提出了一种联合卷积神经网络与集成学习的遥感影像场景分类算法。首先基于迁移学习的思想,利用在自然影像数据集上训练好的多个深层卷积神经网络模型作为特征提取器,提取图像多个高度抽象的语义特征;然后构建由Logistic回归和支持向量机组成的Stacking集成模型,对同一图像的多个特征分别训练Logistic模型,将预测概率结果融合构建概率特征;最后利用支持向量机对概率特征训练和预测,得到场景影像的分类结果。利用UCMerced_LandUse和NWPU-RESISC 45两种不同规模的遥感影像数据集进行试验,即使在只有10%的数据作为训练样本情况下,本文方法能够分别达到90.74%和87.21%的分类精度。  相似文献   

8.
改进的HRNet应用于路面裂缝分割与检测   总被引:1,自引:0,他引:1  
针对利用传统卷积神经网络进行路面裂缝分割时存在准确率低、信息丢失及边缘模糊的问题,本文提出了基于改进HRNet模型的路面裂缝分割算法。模型在原始HRNet的基础上进行改进,主干网络部分采用DUC模块代替双线性插值上采样;下采样改为passthrough layer代替原始卷积;在模型解码部分,进行逐级上采样的同时引入SE-Block,对不同特征层的融合重新标定权重。通过与原始HRNet及传统卷积神经网络U-Net对比可知,本文算法在公共数据与自制数据集上的分割精度表现优秀,F1分值分别达到了91.31%和78.69%,可以很好地满足实际工程的需求。  相似文献   

9.
针对目前多种网络基于小数据集或国际通用的一些标准数据集进行训练与测试,无法满足从互联网图片中高效识别出地图图片的需求,该文构建了一套基于卷积神经网络的互联网图片分类体系,对自动采集的92543张互联网图片经类型标注后形成样本库,将样本输入残差网络ResNet50和轻量级网络SqueezeNet中进行训练及测试.结果 显示:在地图类中,ResNet50的精确率、召回率分别比SqueezeNet高2.01%、0.32%;前者所耗费的训练、测试时间分别为后者的2.51倍、6.43倍,将上述指标进行归一化处理来综合评价两种网络在地图图片识别中的优越性.得出结论:SqueezeNet网络在地图识别应用中更具优越性,可有效提升在互联网地图图片中所包含"问题地图"的审查效率和及时响应服务.  相似文献   

10.
秦登达  万里  何佩恩  张轶  郭亚  陈杰 《遥感学报》2022,26(8):1662-1673
基于深度神经网络模型的遥感影像地物检测取得了巨大成功,很大程度上得益于大规模数据集的支撑。但是,从现有遥感影像数据集本身来看,不同类别地物的数量分布不一致,同类地物对象以不同尺寸大小呈现,是导致地物样本的尺度不均衡问题的直接因素。对此,本文采用数据集内影像加权融合与地物多尺度特征选择的策略来缓解该问题。首先,将数据集内两张影像的像素值进行加权并得到融合后的影像,从而使不同类别地物样本更加均衡且具有较高的背景多样性;其次,通过选择合适尺度的特征图预测相应尺度的目标类别,且允许同一尺度目标在相邻特征图上进行预测,这样使模型能根据目标尺度进行训练;最后,基于目标中心区域的特征图预测目标边界框,预测的边界框更符合目标本身的尺度。通过在两个遥感数据集上分别进行实验,表明训练的模型在对复杂背景下的类别不均衡目标的识别更加准确,能够适应遥感影像下不同尺度目标的识别。  相似文献   

11.
吴琼  葛大庆  于峻川  张玲  李曼  刘斌  王艳  马燕妮  刘宏娟 《测绘学报》2022,51(10):2046-2055
全面识别和发现地质灾害隐患,已成为我国地质灾害防治的重大实际需求。目前,基于InSAR技术和深度学习相结合用于广域尺度下地质灾害隐患智能识别应用效果与适用性还需要进一步探索与研究。本文基于Stacking InSAR技术获得地表形变相位数据,利用深度学习检测识别正在变形的滑坡隐患位置与分布,确定显著性形变区边界,探索将上述技术方法推广到一定的广域范围和动态更新数据集。结果显示,测试数据集显著性形变区平均识别精度为0.69,召回率为0.67,F1 score为0.67,动态更新数据集识别精度为0.85,召回率为0.58,F1 score为0.68。研究表明,本文方法在广域地灾隐患识别中具有应用可行性,可为地质灾害监测预警提供理论基础与技术支撑。  相似文献   

12.
通过分析沥青路面的特性,本文提出了一种适用于沥青路面裂缝检测的图像处理算法。通过计算图像局部像素均值、横向与纵向相邻局部像素均值的均值以及两均值的标准差,结合滤波以及基于像片晒相原理的匀光操作来抑制图像背景的噪声出现,缓解灰度不均匀现象,突出沥青裂缝特征。采用分块图像处理方案,实现路面影像的裂缝提取。实验结果表明,本算法对裂缝线性特征敏感,检测效果较好。  相似文献   

13.
针对车载移动测量系统数据采集特点,构建车载激光点云扫描线索引,提出了一种基于扫描线索引的道路路面与路边点云稳健分类法。首先通过分析扫描线上不同地物剖面的空间分布特征,进行剖面激光点生长聚类,形成完整的地物剖面目标点集;然后根据点集的几何特征因子判断点集类型;最后利用相邻多条扫描线上路边点分布规律进行去噪。对车载移动测量系统获取的两份点云数据进行实验,路面与路边提取的平均完整率分别为94.4%、86%,平均准确率分别为98.9%、99.1%。实验分析表明,该方法能有效减少粗糙路面点的错误分类,适应不同的道路路边条件,降低独立地物对路边提取的干扰。  相似文献   

14.
为实现从低频轨迹数据中提取城市道路交叉口,本文设计了一种基于数据预处理与聚类算法的道路交叉口精准识别方法。首先结合轨迹数据的特征,采用启发式滤波算法对原始数据进行清洗,剔除冗余点与异常点;然后依据车辆的运行规律,提出了一种分步式道路交叉口的提取算法,由此计算出疑似道路交叉口的特征点;最后利用层次密度聚类算法(HDBSCAN)对筛选过后的轨迹点进行聚类并提取质心,得到道路的交叉口,最终以成都市某日的出租车行驶轨迹为数据源,进行试验分析。结果表明,使用该算法提取交叉口,精确率达95.33%、召回率达82.11%、F值达88.46%,能有效且准确识别城市道路交叉口信息,在城市管理与交通规划中具有一定的应用价值。  相似文献   

15.
多特征约束的高分辨率光学遥感影像道路提取   总被引:1,自引:1,他引:0  
针对复杂场景中的遥感影像道路提取问题,论文提出了一种多特征约束的影像道路提取方法,并开展了论文方法可行性论证。该方法首先,根据道路宽度的先验知识以及道路的几何特征,提出一种改进的线段二次提取模型,利用线段长度和道路宽度确定候选道路种子点集;其次,输入道路结构信息,基于道路辐射特征对候选道路种子点进行整体匹配评价;再次,当候选道路种子无法符合辐射特征要求时,提出一种浅色机动车检测模型,以此将浅色机动车结果作为道路上下文特征,利用道路上下文特征对候选道路种子点进行分析;然后,构建道路拓扑分析模型,依据道路拓扑特征对候选道路种子点进行最终验证;最后,对提取道路种子点进行优化处理,并提出道路跟踪及拟合方法。通过不同复杂场景、不同分辨率高分辨率遥感影像下开展的不同方法实验结果对比分析表明,相对于其他商用软件ECognition和Erdas的方法,本方法自动化程度更高,运行效率高,适用于解决道路类型多样化、几何光谱噪声大的复杂场景道路提取问题。  相似文献   

16.
张健  保文星 《遥感学报》2022,26(2):416-430
针对基于深度学习的分类模型在训练样本较少时所遭受的潜在过拟合问题,提出一种具备过拟合抑制的生成式对抗网络分类算法,并应用于高光谱图像分类.该算法在每次迭代时,首先,依据训练样本的标签信息使判别器网络拟合训练样本的数据分布;然后对训练样本的高维特征进行均值最小化,该过程会重新更新判别器网络参数,减小参数的值和方差,以抑制...  相似文献   

17.
针对复杂场景下高分辨率遥感影像中建筑物提取精度低的问题,本文提出了一种融合多特征改进型PSPNet模型,在PSPNet网络的基础上,加入膨胀卷积模块并融合图像的浅层特征。试验结果表明,融合多特征改进型PSPNet模型的预测结果总体精度为95.90%,建筑物提取精度平均为77.77%,均高于其他模型。其在不同场景上的表现有所差异:复杂场景1的预测精度为80.35%;以城中村建筑物为主的场景2的预测精度为75%;以高层建筑物为主的场景3的预测精度为78.11%。因此本模型可有效地提升高分辨率遥感影像中复杂场景下的建筑物提取精度。  相似文献   

18.
高速公路是国家路网的重要组成部分,随着"一带一路"政策的提出,高速公路的修建及维护变得越来越重要。截至2017年底,我国高速公路里程累计约13.1万千米,居于世界前列。软土路基是一种特殊的路基,其主要特点是压缩性高、含水量大、天然强度低和渗透性差,主要分布于江、河、湖、海沿岸以及多雨的山间洼地等地区,修筑的高速公路如果穿过软土地区,其路基的沉降持续时间更长,变形速率更快,严重影响路面的平顺和稳定,需要进行更加严格的沉降观测和精度更高的沉降预测模型。本文以哈尔滨至牡丹江高速公路(简称哈牡高速)为研究对象,实地采集沉降观测数据,将常用的沉降预测模型结果与组合预测模型结果进行对比分析,证明组合预测的方法具有一定的优势,结论对东北地区软土路基高速公路的沉降预测具有一定的参考价值。  相似文献   

19.
Road network extraction from high resolution satellite images is one of the most important aspects. In the present paper, research experimentation is carried out in order to extract the roads from the high resolution satellite image using image segmentation methods. The segmentation technique is implemented using adaptive global thresholding and morphological operations. Global thresholding segments the image to fix the boundaries. To compute the appropriate threshold values several problems are also analyzed, for instance, the illumination conditions, the different type of pavement material, the presence of objects such as vegetation, vehicles, buildings etc. Image segmentation is performed using morphological approach implemented through dilation of similar boundaries and erosion of dissimilar and irrelevant boundaries decided on the basis of pixel characteristics. The roads are clearly identifiable in the final processed image, which is obtained by superimposing the segmented image over the original enhanced image. The experimental results proved that proposed approach can be used in reliable way for automatic detection of roads from high resolution satellite image. The results can be used in automated map preparation, detection of network in trajectory planning for unmanned aerial vehicles. It also has wide applications in navigation, computer vision as a predictor-corrector algorithm for estimating the road position to simulate dynamic process of road extraction. Although an expert can label road pixels from a given satellite image but this operation is prone to errors. Therefore, an automated system is required to detect the road network in a high resolution satellite image in a robust manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号