首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The Alpha Ridge is one of three subparallel trending ridges that cut the Arctic Ocean. It is roughly Late Cretaceous to Eocene in age, and seismic refraction records suggest it comprises a thick sequence of oceanic crust. During the 1983 CESAR expedition 20 similar samples of acoustic basement were dredged from the walls of a major graben of the Alpha Ridge, at one site. These are the only basement samples ever recovered from the ridge and provide the first direct evidence for its nature, composition and possible origin.The basement samples are highly altered pyroclastic rocks composed almost entirely of basaltic volcanic clasts with little matrix. Although the rocks are highly altered, most primary textures and structures are preserved. Most clasts are highly amygdaloidal to scoriaceous, fine grained to glassy, and angular to subround with rare vesicle controlled boundaries. Little reworking is suggested because a single clast type predominates, many of the clasts are subangular, and any amount of reworking would result in destruction of the delicate scoriaceous clasts.Rare clinopyroxene phenocrysts comprise the only unaltered portion of the rocks. They are salitic in composition (Wo49–53, En32–41, Fs11–15), with significant amounts of Ca, Al and Ti. Salitic clinopyroxenes are typical of alkalic basalts.Interpretation of the whole rock geochemistry based on relatively immobile elements, (Nb, Zr, Tio2, and Y), and chondrite-normalized incompatible trace element and REE patterns indicates that the volcanic rock fragments are of alkalic basalt. Geochemical discriminators suggest a within-plate tectonic setting.Textural evidence suggests that the CESAR basement rocks were sampled from a rapidly emplaced submarine fallout deposit that was erupted at a depth at least less than 800 m and likely less than 200 m. High extrusive rates would have been required to build the ridge up to shallow depth prior to the cessation of volcanism. The alkalic affinity of the rocks strongly suggests that the Alpha ridge was not formed by volcanism at an island arc or a mature spreading centre. It is also unlikely that it formed as a “leaky” fracture zone. Alkalic basalts, however, are commonly associated with various types of oceanic aseismic ridges. It is suggested that the Alpha Ridge is an aseismic ridge that formed due to voluminous hotspot volcanism as spreading began in the Canada Basin. Such hotppot activity may have been responsible for initiating the rifting, breakup, and dispersal that eventually formed the Canada Basin.  相似文献   

2.
Igneous material dredged from the Rio Grande rise, South Atlantic Ocean, includes basaltic rocks, some having mafic nodules and megacrysts, and volcanic breccias composed largely of basaltic fragments. These samples represent the only volcanic rocks recovered from this aseismic rise. Bulk compositions show alkalic basalt, trachybasalt, and trachyandesite; the rock types are similar to those of nearby Tristan da Cunha, Gough, and the Walvis ridge. Microprobe analyses show basaltic groundmass to have olivine, Fo85, pyroxene, Fs13Wo46, feldspar, An71, plus interstitial alkali feldspar. Mafic nodules and megacrysts have olivine, Fo86–90 and pyroxene Fs6–7.5Wo45–46; Al2O3 2.5–4 wt.%.The Rio Grande rise rocks have compositional characteristics of an alkalic basaltic suite, and not of mid-ocean ridge tholeiite. Based on mineral compositions, nodules and megacrysts in basalt are interpreted as cognate inclusions. Because oceanic alkalic basaltic rocks are almost invariably associated with islands and seamounts, the Rio Grande rise probably represents a series of alkalic-basalt islands that formed and eventually subsided during rifting of the South Atlantic; the dredged volcanic breccias are probably slump deposits from those volcanoes. This interpretation lends support to the Rio Grande rise having formed at a hot spot, but the possibility of alkalic rocks having formed along fracture zones should not be discounted.  相似文献   

3.
Some trace element data for volcanic rocks found at different levels, from Tertiary to Holocene, in south-eastern Sicily (Iblean Plateau and Mt. Etna) are presented and discussed in the present paper in order to better the information about the origin and relationships of the various rock types. Four groups of volcanic rocks have been recognized on the basis of their major element chemistry: 1) low-K tholeiites, 2) associated alkali basalts to nephelinites of the Iblean Plateau (Upper Pliocene to Lower Pleistocene), 3) the basal subalkaline lavas of Mt. Etna, and 4) the alkalic suite rocks that make up the bulk of the volcano. The distribution of Rb, Sr, Ni, Cr, Co, Cu, REE, Th and Sc suggests:
  1. an origin of the Iblean magmas by a different degree of partial melting of a Rb-poor and possibly slightly hetereogeneous mantle;
  2. quite distinct source compositions for the Etnean magmas, relative to those of the Iblean area, on the basis of their Rb and Sr contents;
  3. an origin of the alkalic rocks of Mt. Etna from independently generated magma(s) rather than by crystal fractionation of the Etnean subalkaline magmas or of a magma having the geochemical features of the Iblean alkali basalts; evidence for this is given by the distribution features of the incompatible elements showing an origin for these rocks from compositionally different parent magmas and/or an evolution under widely variable environmental conditions;
  4. the primary character for the chemical differences observed in some of the Etnean subalkaline rocks that can be accounted for by different physico-chemical conditions at their source rather than by crystal fractionation processes.
  相似文献   

4.
Recent geological and petrological results from the Lesser Antilles island arc and Papua New Guinea, and from other regions of arc-trench-type volcanism, provide notable exceptions to the spatial, volumetric, and temporal relationships claimed for generalised arc models. For example, many alkalic and shoshonitic associations do not appear to be developed over the deepest parts of downgoing slabs, and there are now several well-documented exceptions to the K2O/SiO2/depth-to-Benioff-zone relationship. Moreover, the temporal sequence of early tholeiitic → middle calcalkalic → late shoshonitic/alkalic is not well substantiated, although shoshonitic rocks do appear to be developed most commonly in regions with a long history of plate interactions. Exceptions to the generalised arc model are symptomatic of the need to look for the unique features of individual island arcs, rather than just similarities between different ones, so that the major factors controlling arc evolution may be determined.  相似文献   

5.
The Marangudzi ring complex, Rhodesia, consists essentially of a gabbro mass intruded by ring dykes of quartz syenite and cone sheets of nepheline syenite. Five intrusive units (gabbro, two quartz syenite and two nepheline syenite units) have been studied using Rb-Sr and K-Ar methods. A total of 24 whole rock samples define a Rb-Sr isochron which gives an age of 186 ± 3m.y. and an initial (87Sr/86Sr)0 ratio of 0.70769 ± 0.00006 (±2sigma; based on λ = 1.42 × 10?11yr?1). K-Ar and Rb-Sr analyses on biotite and hastingsite separates are consistent with this age assignment. Whole rock Rb-Sr isochrons for the different units treated individually agree with the above age and initial Sr ratio within analytical uncertainties. This is believed to indicate that the different rock types are comagmatic forming by fractional crystallization of a parental, mantle-derived, K2O-rich basaltic magma, having an initial Sr ratio of 0.7077, without appreciable assimilation of the Precambrian country rock. The entire differentiation, emplacement and crystallization processes took place over a rather short time span.  相似文献   

6.
Factors analysis is useful for studying the interrelationships of trace and major elements in sets of rock analyses. Its application to basic volcanic rocks show various features: (i) the principal factors relate to variation among mineral components; (ii) the behaviour of K is similar to that of Rb, Ba, Sr and in some cases P, W, Tl also; (iii) the coherence of Tl with K and Rb is often masked by a secondary effect depending on petrography; (iv) in some rock-groupings Li and H2O? are closely associated; (v) an unexpected association is Na, P and Sr; (vi) factor-scores can be used to discriminate alkalic from subalkalic basalts, using various element combinations.  相似文献   

7.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

8.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

9.
Chien-Yuan  Tseng  Guo-Chao  Zuo  Huai-Jen  Yang  Houng-Yi  Yang  Kuo-An  Tung  Dun-Yi  Liu  Han-Quan  Wu 《Island Arc》2009,18(3):526-549
Field relationships, mineralogy and petrology, whole‐rock chemistry, and age of the Zhamashi mafic–ultramafic intrusion in the North Qilian Mountains, northwest China, have been studied in the present work. The Zhamashi intrusive body consists of ultramafic, gabbroic, and dioritic rocks in a crudely concentrically zoned structure. The ultramafic rocks are layered cumulates with rock types varying continuously from dunite through wehrlite and olivine clinopyroxenite to clinopyroxenite. The gabbroic and dioritic rocks are also layered or massive cumulates with rock types varying continuously from noritic gabbro through hornblende gabbro to diorite. The ultramafic and adjoining gabbroic rocks are discontinuous in lithology and discordant in structure across the interface. The interface is steep, sharp, and fractured. Contact metamorphic zones are well developed between the Zhamashi intrusive body and the country rock. The concentrically zoned structure of the intrusive body and the intrusion into the continental crust are the two main pieces of evidence for considering that the Zhamashi intrusion is Alaskan‐type. The mineral chemistry of the chromian spinels (Cr‐spinels) and clinopyroxenes, and the variation trend of the whole‐rock compositional plot in the (Na2O + K2O)–FeO–MgO (AFM) diagram are also supportive of this consideration. The age of the Zhamashi intrusive body, determined with sensitive high mass‐resolution ion microprobe on the zircon grains, is 513.0 ± 4.5 Ma. Parental magma of the Zhamashi intrusion is compositionally close to the primitive magma produced by partial melting of the mantle peridotite. It was differentiated by fractional crystallization at low total pressure and under H2O‐rich conditions in an arc environment to form all the major rock types. The concentrically zoned structure of the Zhamashi intrusive body was constructed in two stages: formation of a stratiform‐type layered sequence, followed by diapiric re‐emplacement. The occurrence of the Alaskan‐type intrusion suggests an active continental margin and Cambrian arc magmatism for the northern margin of the Qilian Block.  相似文献   

10.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

11.
The Pleistocene volcanic rocks from northern Taiwan include the Tatun volcano group and the Chilung volcano group. Three rock types occur in this area: Tatun volcano group yield high-alumina basalt and andesites, whereas the chilung volcano group mainly consists of dacites. In addition, amphibole-rich nodules have also been found in different cruptive units of the former volcano group. Around seventy sample of various rock types have been conducted for geochemical studies, including analyses of major elements and trace elements such as Co, Cr, Cu, Li, Ni, Zn, Zr, V, Rb and Sr. Results of Al2O3, MnO, TiO2 total alkali content, MgO/ΣFeO and K2O/Na2O ratios and AMF diagram indicate that these Pleistocene volcanic rocks belong to typical calalkaline rock series. Detailed study of the trace elements reveals that these volcanic rocks are closely correlated with rocks of continental margin type with respect to Rb, Cu, Co, Ni, V and Cr contents, and K/Rb and Ni/Co ratios. These rocks are most probably derived from the fractionation of basaltic magma controlled mainly by the crystallization of amphibole and plagioclase with magnetite playing a minor role.  相似文献   

12.
The Abitibi Volcanic Belt in eastern Superior Province of the Canadian Shield is the largest continuous greenstone belt in the world and is a key example of late Archean crust. This belt has, in general, suffered a low intensity of metamorphism and deformation, and, as a result, the stratigraphy and geology are well established. Tholeiitic and calc-alkaline series of igneous rocks are present in this belt in about equal proportions. However, the undersaturated potassic and leucitic volcanics of the Timiskaming Group are a unique feature of this belt.SmNd systematics were determined for twelve Timiskaming volcanic rocks. These rocks show nepheline, diopside and/or olivine plus leucite in the norm and a highly fractionated REE pattern. Sm and Nd concentrations range from 25 to 160 and 45 to 300 times the chondritic abundance, respectively. The Sm and Nd isotopic data yield an isochron age of 2702±105Ma for these volcanic rocks with an initial εNd of +1.9±1.6. This age establishes the Timiskaming alkalic rock to be one of the oldest of their kind. From stratigraphic relations, 2705 Ma is an upper limit for the age and the εNd values of +1.8 to +2.2 at this age for the twelve rocks are also upper limits. Further, this small but positive εNd value for the isochron, when compared to other mantle-derived Archean rocks in the Superior Province, indicates that the Archean mantle was heterogeneous beneath the Canadian Shield and that the Timiskaming alkalic lavas were derived from a depleted mantle.  相似文献   

13.
18O/16O and 87Sr/86Sr ratios were determined for Quaternary calc-alkalic volcanic rocks from six volcanic rock suites in the central and western Japan arcs. The δ18O values relative to SMOW and 87Sr/86Sr ratios range from +6.3 to +9.90/00 and 0.70357 to 0.70684, respectively. Both the O- and Sr-isotopic compositions are higher than those for island-arc primitive magmas and their differentiates. The isotopic compositions of the calc-alkalic rocks cannot be derived by a simple fractional crystallization of the primitive magmas. On the other hand, the 18O- and 87Sr-enrichment is confined to the rock suites located in well-developed island arcs having thick continental-type crust with low or negative Bouguer anomalies. Involvement of 18O- and 87Sr-rich crustal material in the magma formation is suggested.The isotopic compositions vary remarkably within individual rock suites as well as from volcano to volcano. The data points in δ18O vs. 87Sr/86Sr plot accord with a mixing model between primitive magmas and crustal material of dioritic composition on an average, assuming their comparative Sr contents. The primitive magmas involved could not be low-Sr tholeiites, but magmas more or less enriched in incompatible elements including Sr, which correspond to high-alkali tholeiites or alkali basalts and their evolved magmas. The nature of the primitive magmas seems to change from tholeiitic to more alkalic with progressing island-arc evolution.Mixing of crust-derived melts is more plausible than assimilation of solid-rocks for involving 20 to 30% crustal material in the magmas along simple mixing curves. Isotopic variations between the rock suites are ascribed to variable Sr concentration radio of the end-members, variable isotopic compositions of crustal material or variable mixing ratio of the end-members. Extremely high-δ 18O rocks with moderate increase in 87Sr/86Sr ratio suggest another mixing process in shallower magma chambers between andesite magmas and metasedimentary rocks having high δ 18O and 87Sr/86Sr values but low Sr content. Subsequent fractional crystallization of once-derived magmas would be the prominent process for the rock suites showing gradual increase in 18O up to 10/00 with uniform 87Sr/86Sr ratios.  相似文献   

14.
Silicic peralkaline volcanic rocks of the afar depression (Ethiopia)   总被引:1,自引:0,他引:1  
Three main types of recent volcanism may be distinguished in the Afar Depression: 1) oceanic volcanism of the axial ranges; 2) volcanism along the margins where an attenuated sialic crust probably occurs; 3) mainly fissural volcanism of Central-Southern Afar, with associated central volcanoes, similar as a whole to the volcanism of the Ethiopian Rift Valley. Peralkaline silicic volcanic rocks are found in all the three groups but showing some different characteristics which seem related to their geological location and which probably reflect different sources. Moreover emplacement of peralkaline granitic bodies, associated with volcanics of the same composition, marks the first stage of formation of the Afar Depression, in the Early Miocene. Axial Ranges: Erta’Ale and Boina volcanic ranges indicate that peralkaline rocks are the final liquids produced by fractionation of basalt in shallow magma chambers of central volcanoes. The parental magma is a transitional type of basalt with a mildly alkalic affinity, which fractionated under lowpH2O-pO2 conditions. Transition to peralkaline liquids is realized without passing a «true» trachytic (low silica) stage. The first peralkaline liquid is a low silica comendite and evidence exists that «plagioclase effect» was active in determining the first peralkalinity. Within the peralkaline field a fractionation mainly controlled by alkali feldspar progressively increases the peralkalinity and silica oversaturation of residual liquids (transition from comendites to pantellerites). The most peralkaline pantellerites of Boina are produced by fractionation of an alkali feldspar of constant composition (Ab65–68 Or35–32) suggesting that these liquids lie on a «low temperature zone» of the peralkaline oversaturated system. Marginal Units: On the borders of the depression peralkaline silicics are found in volcanic massifs mainly made of metaluminous silicic products. Petrology and geochemistry suggest a complex origin. Crystal fractionation, contamination with sialic crust and chemical changes related to a volatile rich phase, all these processes probably played a role in the genesis of these peralkaline silicic rocks. Central-Southern Afar Fissural Volcanism: Mildly alkaline basalts are associated with peralkaline and metaluminous silicics; intermediate rocks are very scanty. Fractionation from deep seated magmatic bodies with selective eruptivity and partial melting at depth of associated basalts or of a common source material are possible genetic mechanisms.  相似文献   

15.
Summary Measurements have been made of the dieletric anisotropies of a number of rocks for which magnetic anisotropy data have been obtained previously. The purpose was to examine the possible usefulness of dielectric anisotropy as a physical property indicative of rock fabrics. Its advantage over the magnetic method is that it measures an average alignment of crystals of the dominant minerals, whereas magnetic anisotropy is due only to the ferromagnetic grains. Disadvantages are an extreme sensitivity to specimen shape and difficulty in distinguishing the several types of alignment which can give rise to dielectric anisotropy. In a number of strongly foliated rocks the axes of dielectric anisotropy were found to coincide with the axes of magnetic anisotropy. Specimens from a magnesian-pyroxene rich layer in a Tasmanian dolerite sill and from the olivine rich layer of the Palisades dolerite sill, New York, were found to have no systematic anisotropy. The pyroxenes in the Tasmanian dolerite are elongated crystals (about 2: 1) so that the dielectric measurements show that they do not have a preferred horizontal alignment and therefore have probably not settled as individual crystals. Most of the olivines in the Palisades dolerite are more nearly equidimensional so that the absence of measurable anisotropy in this rock is less conclusive evidence against crystal settling.  相似文献   

16.
The geology of Lesotho is relatively simple: the overall structure being that of a large shallow basin of Karroo sediments and volcanics. The rocks analysed in this study were collected in December 1966. The principal objectives of the study were (a) to date the inception of Karroo volcanism and (b) to arrive at an estimate of the time-span represented by the lava section along the Bushman’s Pass road east of Maseru. The date at which volcanism began in Lesotho is important because of recent discoveries of early mammalian fossils in underlying beds; in relation to the Phanerozoic Time-Scale and to the K-Ar age pattern found in the Karroo dolerites of South Africa byMcDougall (1963). Cox andHornung (1966) have suggested that the fractionation stage reached by Karroo magmas may depend upon either the height of the magma column or the time that elapsed since the beginning of the volcanic episode. An estimate of the time-span of volcanism along the Bushman’s Pass section is of interest because of the extensive palaeomagnetic work done on these rocks at the Bernard Price Institute of Geophysical Research in Johannesburg. The paper contains the results of triplicate conventional total degassing whole rock K-Ar age determinations on 8 Drakensberg lavas and on 8 Karroo dolerite sills and dykes. The analysed rocks are described petrographically and the age pattern obtained from them is discussed in relation to the age and petrological information available from other Karroo igneous rocks. It is concluded that Karroo volcanism began in Lesotho around 187 m.y. and that « Karroo » intrusive activity continued intermittently until at least 155 m.y. ago. Some possible geological and petrological implications of these conclusions are outlined.  相似文献   

17.
True Triaxial Stresses and the Brittle Fracture of Rock   总被引:3,自引:0,他引:3  
This paper reviews the efforts made in the last 100 years to characterize the effect of the intermediate principal stress σ 2 on brittle fracture of rocks, and on their strength criteria. The most common theories of failure in geomechanics, such as those of Coulomb, and Mohr, disregard σ 2 and are typically based on triaxial testing of cylindrical rock samples subjected to equal minimum and intermediate principal stresses (σ 3=σ 2). However, as early as 1915 Böker conducted conventional triaxial extension tests (σ 1=σ 2) on the same Carrara marble tested earlier in conventional triaxial compression by von Kármán that showed a different strength behavior. Efforts to incorporate the effect of σ 2 on rock strength continued in the second half of the last century through the work of Nadai, Drucker and Prager, Murrell, Handin, Wiebols and Cook, and others. In 1971 Mogi designed a high-capacity true triaxial testing machine, and was the first to obtain complete true triaxial strength criteria for several rocks based on experimental data. Following his pioneering work, several other laboratories developed equipment and conducted true triaxial tests revealing the extent of σ 2 effect on rock strength (e.g., Takahashi and Koide, Michelis, Smart, Wawersik). Testing equipment emulating Mogi's but considerably more compact was developed at the University of Wisconsin and used for true triaxial testing of some very strong crystalline rocks. Test results revealed three distinct compressive failure mechanisms, depending on loading mode and rock type: shear faulting resulting from extensile microcrack localization, multiple splitting along the σ 1 axis, and nondilatant shear failure. The true triaxial strength criterion for the KTB amphibolite derived from such tests was used in conjunction with logged breakout dimensions to estimate the maximum horizontal in situ stress in the KTB ultra deep scientific hole.  相似文献   

18.
Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review   总被引:6,自引:0,他引:6  
—Seismic anisotropy is often neglected in seismic studies of the earth’s crust. Since anisotropy is a common property of many typically deep crustal rocks, its potential contribution to solving questions of the deep crust is evaluated. The anisotropic seismic velocities obtained from laboratory measurements can be verified by computations based on the elastic constants and on numerical data pertaining to the texture of rock-forming minerals. For typical lower crustal rocks the influence of layering is significantly less important than the influence of rock texture. Surprisingly, most natural lower crustal rocks show a hexagonal type of anisotropy. Maximum anisotropy is observed for rocks with a high content of aligned mica. It seems possible to distinguish between layered intrusives and metasediments on the basis of in situ measurements of anisotropy, which can thus be used to validate different scenarios of crustal evolution.  相似文献   

19.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

20.
Edwin  Ortiz  Barry P.  Roser 《Island Arc》2006,15(2):223-238
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X‐ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180–2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180–2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180–2000 µm fractions, or show little contrast in abundance. Sediments from granitoid‐dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid‐derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180–2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid‐derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid‐derived <180 µm fractions relative to 180–2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号