首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chang'e-3(CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras(Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.  相似文献   

2.
Xiaohui Gong  Ya-Qiu Jin 《Icarus》2012,218(2):807-816
According to the incidence and azimuth angles of the Sun during observations of Chinese Chang’E-1 (CE-1) lunar satellite, brightness temperatures (Tb) at different lunar local time observed by the CE-1 multi-channel radiometers, especially at the Sinus Iridum (i.e. Bay of Rainbow) area, are collected from the transformation between the principal and local coordinates at the observed site, which demonstrates the Tb distribution and its diurnal variation. Based on a three-layer radiative transfer model of the lunar media, the CE-1 Tb data at 19.35 and 37.0 GHz channels are applied to invert the physical temperatures of both the dust and the regolith layer at Sinus Iridum area, where might be the CE-3 landing site, at different lunar local times. The physical temperature variations with the lunar local time and other geophysical parameters of lunar layered media are discussed.  相似文献   

3.
Lunar Penetrating Radar(LPR) based on the time domain Ultra-Wideband(UWB) technique onboard China's Chang'e-3(CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.  相似文献   

4.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

5.
The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3(CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy.  相似文献   

6.
An accurate determination of the landing trajectory of Chang'e-3(CE-3)is significant for verifying orbital control strategy, optimizing orbital planning, accurately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The landing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hovering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of images that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy,and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions.  相似文献   

7.
The main goal of the gamma-ray spectrometer(GRS) onboard Chang'E1(CE-1) is to acquire global maps of elemental abundances and their distributions on the moon,since such maps will significantly improve our understanding of lunar formation and evolution.To derive the elemental maps and enable research on lunar formation and evolution,raw data that are received directly from the spacecraft must be converted into time series corrected gamma-ray spectra.The data correction procedures for the CE-1 GRS time series...  相似文献   

8.
Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's "eye" was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360?panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.  相似文献   

9.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

10.
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research’s (COSPAR’s) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable “ground truth” data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.  相似文献   

11.
Lunar Penetrating Radar(LPR) onboard the rover that is part of the Chang'e-3(CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission,a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.  相似文献   

12.
Based on spaceborne experimental data, characteristics of turbulence are calculated for the Venusian troposphere under conditions corresponding to the planet-averaged flux of solar radiation, which is equal to its value at a solar zenith angle of 66°. Additionally, given experimental data on radiation fluxes and their numerical calculations, turbulence characteristics were calculated for a solar zenith angle of 45°. The turbulence pattern is significantly different for small and large solar zenith angles. At large solar zenith angles, there exist an anomalous downward turbulent heat flux above 7–10 km and a normal upward flux at lower heights. At small zenith angles, the turbulent flux is normal throughout the entire troposphere. The dissipation of turbulent energy contributes significantly to the atmospheric heating in a wide range of altitudes. The spectrum of the time and space scales of dissipative processes in the troposphere is very wide and changes with height.Translated from Astronomicheskii Vestnik, Vol. 39, No. 1, 2005, pp. 38–50.Original Russian Text Copyright © 2005 by Izakov.  相似文献   

13.
14.
Lunar surface potential and electric field   总被引:1,自引:0,他引:1  
The Moon has no significant atmosphere, thus its surface is exposed to solar ultraviolet radiation and the solar wind. Photoemission and collection of the solar wind electrons and ions may result in lunar surface charging. On the dayside, the surface potential is mainly determined by photoelectrons, modulated by the solar wind;while the nightside surface potential is a function of the plasma distribution in the lunar wake. Taking the plasma observations in the lunar environment as inputs, the global potential distribution is calculated according to the plasma sheath theory, assuming Maxwellian distributions for the surface emitted photoelectrons and the solar wind electrons. Results show that the lunar surface potential and sheath scale length change versus the solar zenith angle, which implies that the electric field has a horizontal component in addition to the vertical one. By differentiating the potential vertically and horizontally, we obtain the global electric field. It is found that the vertical electric field component is strongest at the subsolar point,which has a magnitude of 1 V m-1. The horizontal component is much weaker, and mainly appears near the terminator and on the nightside, with a magnitude of several mV m-1. The horizontal electric field component on the nightside is rotationally symmetric around the wake axis and is strongly determined by the plasma parameters in the lunar wake.  相似文献   

15.
The absolute brightness of the zenith sky was measured using a simple calibrated spectrometer during the annular solar eclipse event on May 21, 2012 in Fujioka City, Japan (36.2924°N, 139.0823°E). The sensitivity of the spectrometer was calibrated as a function of wavelength between 400 and 700 nm with an integral sphere. The brightness of the sky decreased to 6 % of its usual condition at the maximum magnitude of the annular eclipse of 0.95 for all wavelengths. The curve describing the variation of sky brightness accords well with the total luminosity of the solar disk estimated by a simple model that accounts for the limb darkening effect. This study provides zenith sky radiance as a function of wavelength and solar elevation angle, which is useful for the investigation of new optical instruments for atmospheric studies.  相似文献   

16.
Age of geological units, surface mineralogical composition, volcanism, tectonics and cratering are major keys for unravelling the geodynamic and geological history of a planet. Thanks to the extensive exploration of the 1960s and 1970s and the compositional mapping of the 1990s missions (Galileo, Clementine and Luna Prospector), the Moon has a unique geological dataset among the extraterrestrial Solar System bodies. The recent and on-going missions, along with the future plans for lunar exploration, will together acquire an extraordinary amount of data. This should provide a solid basis to meet broad objectives like the constraints on the heterogeneity of Lunar composition and the presence of water deposits, the understanding of volcanic and tectonic evolution as well as more specific issues such as the genetic classification of volcanic domes, origin of the dark-halos craters, lava flow emplacement mechanisms, and the kinematics and deformational styles of tectonic structures. The Italian small mission MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre) will be equipped with an integrated context camera and imaging spectrometer, a high resolution camera and a radar altimeter. The spatial and spectral resolution of these instruments will provide data products complementing past and ongoing Lunar mission data, particularly for the polar regions where a full resolution coverage is planned. A general review of some still unanswered questions on lunar surface composition, cold traps, volcanism, tectonics and cratering records is presented here in order to illustrate the potential contribution of MAGIA to these subjects.  相似文献   

17.
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.  相似文献   

18.
Lunar Penetrating Radar(LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.  相似文献   

19.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

20.
The thermal radiation properties as a function of bulk density, angle of illumination and wavelength are presented for lunar fines from the Apollo 14 mission. The density range covered is from 1095 kg/m3 to 1590 kg/m3 and a wavelength range of 0.36–14.5 μm. The solar albedo and total emittance were calculated from spectral values and are compared to Apollo 11 and 12 values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号