首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梁晨  薛向辉  陈廷娣 《地球物理学报》2014,57(11):3668-3678
本文利用2007年1月至2012年12月的COSMIC卫星温度剖线,从中提取了垂直波长在3~10 km的重力波扰动信息,进而分析了全球平流层大气重力波的分布特征.赤道地区低平流层重力波表现出明显的准两年变化,这种变化与风场的准两年变化具有明显的相关性,向下发展速度约为1 km/月;赤道地区高平流层(35 km以上区域)的重力波活动则存在明显的半年变化.中高纬度重力波活动主要表现为冬季强夏季弱.在南极地区存在着与急流的时间、空间以及强度变化密切相关的重力波分布特征,这说明在南极极夜急流是非常重要的一个重力波源;而在北极极夜急流的作用则没有那么强.此外,通过考察不同高度的重力波活动特征,我们发现:30 km以下重力波活动较强区域主要在赤道地区且与强对流区分布基本吻合,地形诱发的以及与天气系统相关的强重力波活动在该高度范围内同样出现;而在30 km以上的区域重力波活动强度分布则会出现与平流层爆发性增温以及极夜急流有关的变化.  相似文献   

2.
Data of neutral meridional wind obtained by the meteor radar at Esrange and data of temperature and pressure measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) spacecraft were studied with respect to a day-to-day atmospheric variability with periods ranging from 1.5 to 5 days. The detailed analysis was carried out for February 2004. Perturbations of the atmospheric parameters at the examined periods appeared mainly as eastward-propagating waves of zonal wavenumbers 1 and 2. We suggested that these waves excited by the jet instability on both flanks of the polar-night jet in the upper stratosphere and mesosphere interact nonlinearly with each other, and this interaction generates secondary waves. The radar observed both primary and secondary waves at mesospheric heights. The data analysis supports this suggestion. Under conditions of weaker instability observed in February 2003 the perturbations of atmospheric parameters of periods ranging from 1.5 to 5 days had smaller amplitudes at heights of the mesosphere than those in February 2004. It was found that the Eliassen-Palm fluxes calculated for the waves generated by the jet instability were mainly downward directed. This result suggests a possible dynamical influence of the mesospheric layers on the lower atmospheric levels.  相似文献   

3.
4.
An inter-hemispheric asymmetry is found in the characteristics of polar mesosphere summer echoes (PMSE) and upper mesosphere temperatures at conjugate latitudes (~69°) above Antarctica and the Arctic. The second complete mesosphere–stratosphere–troposphere (MST) radar summer observation season at Davis (68.6°S) revealed that PMSE occur less frequently, with lower strength and on average 1 km higher compared with their northern counterparts at Andenes (69.3°N). We consider the thermodynamic state of the mesosphere for conjoining hemispheric summers based on satellite and ground-based radar measurements, and show the mesopause region near ~80–87 km of the Southern Hemisphere (SH) to be up to 7.5 K warmer than its Northern Hemisphere (NH) counterpart. We show that this is consistent with our observation of asymmetries in the characteristics of PMSE and demonstrate how the mesosphere meridional wind field influences the existence and strength of the echoes in both hemispheres.  相似文献   

5.
The stratosphere–mesosphere response to the major sudden stratospheric warming (SSW) in the winter of 2003/2004 has been studied. The UKMO (UK Meteorological Office) data set was used to examine the features of the large-scale thermodynamic anomalies present in the stratosphere of the Northern Hemisphere. The vertical and latitudinal structure of the genuine anomalies, emphasized by removing the UKMO climatology, has been investigated as well. The features of the stratospheric anomalies have been related to the mesospheric ones in measured neutral winds from radars and temperatures from meteor radars (90 km). It was found that the stratospheric warming spread to the lower mesosphere, while cooling occurred in the upper mesosphere, a feature that may be related to the large vertical scales of the stationary planetary waves (SPWs). It was shown also that the beginning of the eastward wind deceleration in the stratosphere–mesosphere system coincided with the maximum amplification of the SPW1 accompanied by short-lived bursts of waves 2 and 3.  相似文献   

6.
本文利用AIM卫星搭载的CIPS云图反照率和冰晶粒径数据,从中提取了2007/08南半球和2008年北半球共6489个小尺度重力波活动(波长5~150km范围)个例,对重力波区域与背景云层冰晶粒径谱进行对比分析,从而研究重力波对冰晶平均半径和谱宽的影响规律.结果表明,北半球重力波区域冰晶的平均半径和谱宽分别比背景云层小2.5nm和6.1nm,南半球则分别减小1.1nm和7.9nm.在随纬度的分布上,小于80°时,南北半球的平均半径扰动值均为负值,绝对值随纬度增大而减小,而大于80°时,负扰动转变为正扰动,且绝对值增加;谱宽扰动的绝对值也随着纬度增加而减小,但均为负值.在季节内随时间的分布上,南北半球重力波对冰晶平均半径和谱宽的扰动在始末阶段以负值为主,且绝对值较大,而在中期阶段正负值相当,且绝对值较小.这一特征与重力波引起冰晶粒径变化的振幅在纬度和时间上的分布趋势一致.重力波的波长均随纬度升高而减小,在季节的始末阶段较大,中期小,且南半球的平均波长和变化幅度都要明显大于北半球的,粒径扰动振幅随波长的变化率为南半球0.207nm·km-1,北半球的0.163nm·km-1.根据分析推断,重力波自身的扰动振幅应与其影响区域内的谱参数相对于背景云层的变化量有直接关系,且振幅越大,平均半径和谱宽的负扰动就越大.  相似文献   

7.
Observations made with the co-located Rayleigh lidar and MST radar systems at Aberystwyth (52.4°N, 4.1°W) in Wales and radiosondes from Valentia (51.9°N, 10.2°W) in Eire are used to investigate the changes in the vertical propagation of gravity waves during periods of 4 days in June 1995 and February 1993. In each month, the lidar observations show that the wave activity in the upper stratosphere and lower mesosphere changes between two pairs of days. The radar and radiosonde measurements indicate that mountain waves make no contribution to the changes in intensity. Instead, the changes seem to arise largely from the presence or absence of long-period waves with vertical wavelengths near 8 and 10 km in June and February, respectively. The influence of such waves on the vertical wavenumber spectra is examined and related to the evidence for convective instabilities provided by the temperature profiles.  相似文献   

8.
Using spectral, cross-spectral, and regression methods, we analyzed the effect of the 11-year cycle of solar activity on the ozone content in the stratosphere and lower mesosphere via satellite measurement data obtained with the help of SBUV/SBUV2 instruments in 1978–2003. We revealed a high coherence between the ozone content and solar activity level on the solar cycle scale. In much of this area, the ozone content varies approximately in phase with the solar cycle; however, in areas of significant gradients of ozone mixing ratio in the middle stratosphere, the phase shift between ozone and solar oscillations can be considerable, up to π/2. This can be caused by dynamical processes. The altitude maxima of ozone sensitivity to the 11-year solar cycle were found in the upper vicinity of the stratopause (50–55 km), in the middle stratosphere (35–40 km), and the lower stratosphere (below 25 km). Maximal changes in ozone content in the solar cycle (up to 10% and more) were found in winter and spring in polar regions.  相似文献   

9.
Behavior of semidiurnal tides in the north and south polar MLT regions simulated by Middle Atmosphere Circulation Model at Kyushu University is described. Summertime enhancement of westward propagating semidiurnal tide with zonal wavenumber s=1 is found, which is consistent with the observed result at the South Pole (Ann. Geophys. 16 (1998) 828). Additional numerical simulations show that the non-migrating semidiurnal tide is mainly generated by the nonlinear interactions between stationary planetary waves with zonal wavenumber s=1 and the migrating semidiurnal tide in the stratosphere and mesosphere as suggested by Forbes et al. (Geophys. Res. Lett. 22(23) (1995) 3247).  相似文献   

10.
Powerful VHF radars are capable of almost continuously monitoring the threedimensional velocity vector and the distribution of turbulence in the middle atmosphere, i.e. the stratosphere and mesosphere. Methods of radar investigations of the middle atmosphere are outlined and the basic parameters, mean and fluctuating velocities as well as reflectivity and persistency of atmospheric structures, are defined. Results of radar investigations are described which show that the tropopause level as well as a criterion on the stability of the lower stratosphere can be deduced. Besides mean wind velocities, VHF radars can measure instantaneous velocities due to acoustic gravity waves. The interaction of gravity waves with the background wind is discussed, and it is shown that cumulus convection is an effective source of gravity waves in the lower stratosphere. The vertical microstructure of the stratosphere, manifesting itself in thin stratified sheets in which temperature steps occur, is investigated by applying knowledge from investigations of the oceanic thermocline. Possible origins, like shear generation and lateral convection of the microstructure of the stratosphere, are discussed. Observations of gravity waves in the mesosphere are reviewed and their connection with turbulence structures is pointed out. Finally, some open questions which could be answered by further VHF radar investigations are summarized.  相似文献   

11.
The generation of stratospheric gravity waves(GWs) due to typhoon is simulated by using a meso-scale model(WRF) with a typhoon case,the Matsa in 2005.An 8-day model run that covers the major stages of the Matsa’s development reproduces the key features of the typhoon.For example,good agreements in the typhoon’s track,the intensity,and the spiral clouds,as well as mean state of stratosphere,are seen between the simulation results and the observation.Simulation results clearly show that with typhoon propagates northwestward,pronounced stratospheric GWs are generated continuously in the vicinity of Matsa.The GWs exhibit the typical curve-like wave fronts away from the Typhoon Matsa,and propagate preferentially in the upstream of the background winds.These characteristics reflect that the stratospheric GWs are closely associated with the typhoon,and thus the GWs are referred to as Tropical Cyclone related Gravity Waves(TC-GWs).The results also show that these waves should have a rather large horizontal scale so that the outmost wave fronts can be seen at the distance of ~1000 km to the typhoon center in the horizontal plane of 20 km.This is consistent with the phenomenon of stratospheric TC-GWs with ~1000 km horizontal scale disclosed by the previous observational analysis results.  相似文献   

12.
Observational studies on the semiannual oscillation in the tropical stratosphere and mesosphere are reviewed. Results of many statistics based on rocket and satellite observations reveal that the long-term behavior of the mean zonal wind exhibits two semiannual cycles which have their maximum amplitudes centered at the stratopause level and the mesopause level, each one being associated with the semiannual temperature variations predominating at levels about 10 km lower.Observational evidence obtained from recent studies of the dynamical properties of upper stratospheric waves strongly supports the theoretical consideration that the stratospheric semiannual oscillation is the manifestation of the wave-zonal flow interaction with alternating accelerations of the westerly flow by Kelvin waves and the easterly flow by planetary Rossby waves.Regarding the semiannual variation in the upper mesosphere, however, very little is known about the possible momentum source. Therefore, emphasis is placed on the need for further observations of the structure and behavior of the tropical middle atmosphere.  相似文献   

13.
风云三号卫星微波观测的临近空间大气扰动特征   总被引:1,自引:0,他引:1       下载免费PDF全文
风云三号C星(FY-3C)同时装载有设置了50~60GHz和118.75GHz附近氧气吸收带内通道的微波大气垂直探测器,可以用于监测临近空间下部的大气温度.本文的首要目的是展示FY-3C微波大气垂直探测器在监测临近空间(尤其是平流层)强重力波扰动中的优势特点.在给出平流层强扰动监测结果的基础上,分析了不同波段不同通道监测平流层大气温度扰动的能力.随后,对比分析了FY-3C大气温度探测通道与国外同类仪器在观测平流层扰动中的异同点,并进一步讨论了不同平台相同大气微波探测通道联合分析平流层扰动过程的能力.本文在统计2013年冬季(2012年12月和2013年1、2月)和2014年夏季(2014年6、7、8月)的微波大气垂直探测器观测的全球平流层扰动出现频率分布的基础上,利用FY-3C微波大气温度探测器分析了格陵兰岛附近2014年1月7—11日一次平流层扰动过程.结果表明,FY-3C微波探测器50~60GHz和118.75GHz波段可用于获取平流层不同高度上的大气温度扰动特征,且前一波段的探测能力显著地优于后一波段.随后,针对2014年1月11日拉布拉多半岛附近的平流层强扰动过程,基于FY-3C的MWTS-Ⅱ与METOP-B的AMSU-A的对比观测表明,MWTS-Ⅱ能够揭示平流层波动更细致的水平结构特征.最后,针对2014年8月10日安第斯山脉附近不同平台仪器的相同通道探测结果的分析表明,多平台联合观测可以进一步提高平流层强扰动监测的时间分辨率.  相似文献   

14.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

15.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

16.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

17.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

18.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

19.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

20.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号