首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

2.
《Marine Chemistry》2001,74(1):65-85
Here it is demonstrated that both Porphyra spp. and Enteromorpha spp. of macro-algae display similar and very marked seasonal variations in their concentration factor (CF) of Cu, Pb, Cd and Hg in field conditions. The CF variations are specific for each metal and reproducible over several years. The way variations in the biological activity affect the equilibrium and kinetics of the interaction between trace metals and live algae was studied in vitro. Natural seawater was used as the culture medium. Voltammetry was used for the determination of natural organic ligands and trace metals except Hg, which was determined by mercury cold vapour after on-line pre-concentration. Titrations with the relevant metal demonstrated that the maximum binding capacity of the algae was not significantly dependent on the season for Pb (ca. 100 μmol gdry algae−1), Cd (ca. 50 μmol g−1) and Hg (80–100 μmol g−1). Marked seasonal variations were observed for Cu (ca. 40 μmol g−1 in January; 70 μmol g−1 in May; and 100 μmol g−1 in August). The conditional stability constants of metal–algae complexation sites were seasonally independent and similar for both algae: logKMS′=8.5±0.3 (Cu), 5.6±0.2 (Pb), 5.3±0.2 (Cd) and 18.0±0.3 (Hg). Exudates with a strong Cu complexing capacity (logKCuL=12.47±0.06) were determined in cultures with added Cu, Pb or Cd concentrations, and identified by cathodic stripping voltammetry (CSV) as cysteine or glutathione. All the tested metals promoted the liberation of exudates, both cysteine- and glutathione-like ligands were exuded in the presence of Cu, only cysteine-like ligands in the presence of Pb, and only glutathione-like ligands in the presence of Cd, the rise depending of the season of the year, particularly for Cu. Highest levels were produced in the presence of added Pb. When exposed to either 1- or 100-μM total dissolved metal concentrations, the metal uptake, and its rate, varied with the season and the algae.  相似文献   

3.
During the August 1993 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey cruise to the high latitude North Atlantic, determinations of total dissolved sulfide (TDS=free sulfide, H2S(g)+HS+S2−, plus dissolved metal–sulfide complexes), free sulfide, and carbonyl sulfide (OCS) were made along a horizontal transect and at six vertical profile stations. Unlike data from lower latitudes, the distributions of OCS and TDS were remarkably uniform, with surface water OCS averaging 108 pmol/l and TDS averaging 58 pmol/l; free sulfide was below the detection limits of 5 pmol/l at all stations. The vertical profiles of both OCS and TDS show surface maxima and rapid decreases into the major thermocline. For OCS this is indicative of production via photolysis of dissolved organic sulfur compounds, while TDS may be produced from the hydrolysis of OCS. The concentrations of OCS are similar to those found in coastal waters, and suggests that these sub-polar regions may be large OCS sources to the troposphere during summer. However, it is unclear whether higher concentrations of OCS precursors, a long photo period during summer, or slow rates of removal by hydrolysis due to low temperatures are responsible for the elevated OCS levels. TDS concentrations are primarily controlled by the rate of OCS hydrolysis, production by phytoplankton, and oxidative loss by oxygen and iodate. Both of the losses are affected by trace metal complexation, and to examine this, freshly collected seawater was amended by hydrogen sulfide gas and trace metal additions, and the concentration of free sulfide monitored as a function of metal concentration. This allowed the determinations of conditional stability constants for metal sulfides, with the log Kcond of Cd(HS)+ being 8.0±0.5, 7.0±0.6 for Ni(HS)+, and 7.4±0.7 for Zn(HS)+; attempts at measuring the Kcond of Cu(HS)+ were thwarted by the apparent reduction of Cu(II) to Cu(I) by sulfide. Using these constants in an equilibrium speciation model indicates that on average about 75% of the measured TDS was free, with the remaining fraction complexed with Ni, Cd, and Zn (in order of decreasing percentages). While closer to the field observations than would be found with stability constants reported by other workers, these values are still at variance with the actual speciation (i.e., <30% free). This suggests that the stability constants for Cd, Ni, and Zn are somewhat higher than found, thus reducing the concentration of free sulfide. Nevertheless, these speciation data are important for balancing the TDS budget since the loss by iodate oxidation of free sulfide exceeds all production estimates.  相似文献   

4.
The concentrations of the trace metals Cd, Cu, Fe, Ni, Pb and Zn in the Göta River estuary have been investigated. The following metal fractions have been determined: acid-leachable, dissolved, labile and particulate.The estuary represents a salt wedge type estuary and is situated in a densely populated region of Sweden. The metal concentrations found for the dissolved fraction is in the range of what can be considered as background levels for freshwater. It is difficult to evaluate any estuarine processes other than conservative mixing for Cd, Cu, Ni and Zn. The dissolved levels in the freshwater end member are Cd, 9–25 ngl?1; Cu, 1·1–1·4 μgl?1; Fe, 20–75 μg l?1: Ni, 0·7–0·9 μg l?1: Pb 0·09–0·2 μg l?1; and Zn, 6–7 μg l?1:The results from the acid-leachable fraction show that at high suspended load the particles sediment in the river mouth. The trace metal levels in this fraction are subject to large variations.  相似文献   

5.
Dissolved, weakly and strongly bound particulates Cu, Pb, Zn, Cd, Co, Ni and Fe have been measured in the surface water sampled from eleven stations in Xiamen Harbor by clean laboratory methods and GFAAS. The average concentrations found in dissolved fractions are Cu: 0.41±0.12; Pb: 0.014±0.008; Zn: 0.084±0.043; Cd: 0.022±0.004; Co: 0.009±0.004; Ni: 0.15±0.02; and Fe: 0.15± 0.02 μg/kg, which make up 62%, 6%, 12%, 85%, 5%, 25% and <1% of the total metals in the surface water respectively. The results are mucn lower than those reported previously in the coastal waters of China. Industrial sources of trace metal contamination are likely responsible for the distribution of trace metals.  相似文献   

6.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

7.
The crab Carcinus maenas (L.) and the barnacle Elminius modestus Darwin were exposed to a range of dissolved concentrations of Zn, Cu and Cd for 21 days in artificial seawater. Accumulation of Zn and Cu by crabs has been interpreted in terms of the presence of a regulation mechanism to maintain constant body concentrations (83·2 ± 19·4 μg Zn g?1 dry wt.; 39·8 ± 9·8 μg Cu g?1 dry wt.) under varying external dissolved metal levels, until a threshold dissolved metal concentration (c. 400 μg Zn l?1; c. 170 μg Cu l?1) beyond which net accumulation of metal begins. Cadium appears to be accumulated by C. maenas at all exposures with no evidence for regulation of body cadmium concentrations. Exposure of E. modestus to Zn, Cu or Cd caused net accumulation of the respective metal in the bodies of the barnacles, with no evidence for regulation of body metal concentrations.  相似文献   

8.
Stoichiometry among bioactive trace metals in the Chukchi and Beaufort Seas   总被引:1,自引:1,他引:0  
The distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater was investigated in the Chukchi and Beaufort Seas of the western Arctic Ocean in September 2000. The unfiltered and filtered seawater samples were used for determination of total dissolvable metal (TDM) and dissolved metal (DM), respectively. The concentration of labile particulate metal (LPM) was estimated with the difference between that of TDM and DM. The concentrations of TDAl, TDMn, TDFe, TDCo and TDPb varied substantially in the study area. The high concentrations occurred at stations near the Bering Strait, in the Mackenzie delta, and above reductive sediments on the shelf and slope. These elements were mostly dominated by labile particulate species, such as Fe?CMn oxides and species adsorbed on terrestrial clay. DCo was correlated with DMn over the study area (r?=?0.78, n?=?135), and the slope of the regression line was 27 times higher at a pelagic station than at a shelf station. TDNi, TDCu, TDZn and TDCd showed relatively small variations and were generally dominated by dissolved species. There was a moderate correlation between DCd and phosphate for all samples (r?=?0.79), whereas there were no significant correlation between the other DMs and nutrients. TDNi and TDCu showed a remarkable linearity for most stations except those near the Bering Strait (R 2?=?0.95, n?=?126). These results suggest that biogeochemical cycling including uptake by phytoplankton and remineralization from settling particles has only minor control over the distribution of trace metals in this area. Using the present data, the annual input of bioactive trace metals form the Bering Strait and the Mackenzie River was estimated. Also, the trace metal compositions of major water masses were evaluated. The dissolved elemental ratio was P:Al:Mn:Fe:Co:Ni:Cu:Zn:Cd?=?1:1.2?×?10?2:4.4?×?10?4:1.4?×?10?3:3.7?×?10?5:3.7?×?10?3:1.4?×?10?3:4.5?×?10?3:2.2?×?10?4 for Canada Basin deep water (CBDW). This ratio was significantly different from that for Pacific deep water and Bering Sea water, suggesting substantial modification of the trace metal compositions of seawater in the study area.  相似文献   

9.
The MnO2 adsorption method combined with voltammetry is proposed for the direct determination of metal complexation in seawater of various salinities as a more satisfactory alternative to direct voltammetric measurements and bioassay methods. A small quantity of MnO2 is equilibrated with copper ions in filtered seawater. Natural organic ligands in the seawater compete for copper with the MnO2. Total dissolved copper is measured by differential pulse anodic stripping voltammetry after filtration and acidification of the sample. Preconcentration of natural water samples is unnecessary and measurement is performed at the natural equilibrium pH of the aerated sample. The analytical limit of detection of the method depends on contamination from the filtration step, and for copper complexation a ligand concentration of 5 × 10?8 M was obtained. The sensitivity can be increased by use of radioisotopes as tracers. The method is very versatile in that complexation of various metals may be determined by any analytical method that measures total dissolved metal concentrations. Neither organic ligands nor their complexes with copper adsorb on the MnO2 at pH8, but at pH 1.8 MnO2 is an efficient scavenger for electroactive organic material.Samples of surface water from the Irish Sea and the Atlantic Ocean were found to contain ligand concentrations of 1.7 × 10?7 and 1.1 × 10?7 M, with conditional stability constants (log values) of 9.84 ± 0.13 and 9.86 ± 0.23, respectively, at pH 8.0.  相似文献   

10.
Equilibria between Chelex 100* and manganese, zinc and cadmium ions were used to determine the complexation of these trace metals in 36‰ Gulf Stream seawater at 25°C and pH 8.2. The method utilized radiotracers (54Mn, 65Zn, and 109Cd) to quantify trace metal adsorption from trace metal-amended seawater and from seawater containing a series of ethylenediaminetetracetate (EDTA)—metal ion buffers. Results were consistent with Chelex adsorption of both trace metal ions and trace metal—EDTA chelates. Equilibrium models fitted to the data were used to establish conditional stability constants for Chelex adsorption of manganese, zinc and cadmium ions and for adsorption of EDTA-chelates. These models also yielded ratios of free metal ions to total dissolved trace metal concentrations in seawater: 10−0.1 for manganese, 10−0.2 for zinc, and 10−1.5 for cadmium. Independent measurements with a cadmium ion-selective electrode also yielded a free: total cadmium ratio of 10−1.5.  相似文献   

11.
The concentrations of Pb, Cu, Cd and Zn were determined in above- and belowground parts of eelgrass (Zostera marina L.) at forty stations in a shallow, brackish water area (the Limfjord, Denmark). The concentrations of the trace metals were significantly elevated near the cities of Aalborg (Pb, Cu) and Struer (Cd). Trace metal concentrations in above and belowground parts of eelgrass were log-normal distributed and the concentrations of Cd, Cu and Zn in aboveground parts were significantly higher than in belowground parts. Furthermore, a significant correlation between trace metal concentrations in above- and belowground parts was found. The background level of trace metal concentrations in eelgrass in the Limfjord was estimated.The application of eelgrass as a monitoring organism is discussed; it is suggested that the concentration of some trace metals in above- and belowground parts of eelgrass may be used as a measure of the bioavailable fraction of these trace metals in ambient and interstitial water (sediment), respectively.  相似文献   

12.
Very high concentrations of Zn, Pb, Cu and Cd occur in the muddy bottom sediments of Lake Macquarie, a saline coastal lagoon in southeastern Australia. The trace metals emanate from industrial sources, especially a lead-zinc smelter, at the northern end of the lake. Individual metal concentrations decrease progressively away from the source area but at differing rates; Zn is most mobile and Cd appears to be deposited first. They approach natural background levels in the southern part of the lake. Mn shows a reverse trend but Ni, Co, Ag and Fe rarely rise above background levels.Shallow cores in the lake bed penetrated a metal enriched surface zone 15–35 cm thick underlain by uncontaminated sediments with natural (background) metal concentrations. Sedimentation rates determined from radiocarbon ages on shells in the cores mainly range between 0·15 and 0·5 mm yr?1. Over the 85 years since industrialization commenced, less than 5 cm of mud has accumulated on the lake bed. Bioturbation is invoked to account for the depth to which the sediment has been enriched in heavy metals.  相似文献   

13.
Distributions of Hg, Cd, Pb, Cu and Zn in seawater and sediment from Mljet National Park, Adriatic Sea are presented for the first time. Natural and anthropogenic factors play an important role in determining resultant trace metals' concentrations in the region. We place particular emphasis on the saline “lakes” of Malo Jezero and Veliko Jezero, which have restricted flows of seawater. In Malo Jezero lake, fresh karstic spring water generated by flooding, and weathering of dolomites are the main sources of naturally elevated Cd, Pb and Zn concentrations (20.7 ± 1.6, 289 ± 19, 1260 ± 0.08 ng L?1, respectively); anthropogenic input is negligible. In Veliko Jezero lake enhanced Cu and Zn contents originate from anthropogenic input (tourism and agriculture). Distributions of the Pb and Zn in the water columns of both lakes are influenced by natural aragonite precipitation and sedimentation. Exceptionally high total Hg concentrations of 24.2 and 33.7 ng L?1 in the water column of Malo Jezero, sampled during periods of high rainfall associated with strong eastern winds, suggest an airborne input. Total Hg concentrations in waters of both lakes are elevated because of inefficient mixing. Two different metal distribution patterns exist in the sediment columns. First, Hg, Pb, Cu and Zn show elevated concentrations in recent sediments due to anthropogenic input. Second, Cd content increases with depth due to reprecipitation via a downward redox boundary shift.Described natural processes, as well as anthropogenic influence, enhance levels of trace metals. Careful study followed by suitable interpretation based on geochemical data were necessary to distinguish natural from anthropogenic sources.  相似文献   

14.
We have investigated Pb concentrations and isotopic compositions in settling particles collected by sediment traps experiments over a period of two years, from May 2005 to April 2007, at two depths, 770 and 5100 m, at station KNOT in the Northwestern Pacific Ocean (44°N, 155°E). To the identify provenances of Pb, the samples were separated into two fractions by chemical leaching techniques, with the leachate expected to contain Pb of anthropogenic origin. Isotopic compositions of Pb and concentrations of Pb, Sc, Mn, La, Yb, and Th were measured by quadrupole ICP-MS. The isotope ratios of leachable Pb in settling particles were 207Pb/206Pb = 0.860 ± 0.001; 208Pb/206Pb = 2.116 ± 0.002 (mean ± 95% confidence intervals), which are similar to those of aerosols in China that are greatly affected by pollution from coal combustion. We estimated the mean contribution from anthropogenic Pb sources to the Pb in settling particles, using the conventional binary (anthropogenic and natural Pb) mixing equation for Pb isotopes, as 90% in the upper trap and 78% in the lower trap. Furthermore, we found a significant negative correlation between the isotope ratios of Pb and concentrations of leachable Mn, normalized to those of leachable Pb, suggesting that manganese oxides play an important role in transporting Pb from the upper layers of the ocean to the deeper layers. Our results support the speculation published in a previous study that Pb might be scavenged by Mn oxides in the Northwestern Pacific Ocean.  相似文献   

15.
This study describes the spatial and temporal dynamics of the copepod fauna in the estuary of the Caeté River, a highly dynamic environment characterized by a unique set of hydrological and hydrodynamic attributes. This ecosystem is part of the Amazon Coastal Zone (ACZ), which sustains one of the world's largest continuous tracts of mangrove forest. In the present study, a predominance of high‐energy conditions characterized by macrotides and strong tidal currents was observed throughout the year. Salinity (0.03 ± 0.05–40.00 ± 0.84) and temperatures (26.43 ± 0.10–30.08 ± 0.43 °C) were higher than during the rainy season at all sampling stations. The highest chl‐a concentration (3.92 ± 1.47–17.63 ± 2.60 mg·m?3) was recorded at the most oligohaline (innermost) station during the rainy season, while no spatial or seasonal pattern was found in dissolved nutrient concentrations, except for phosphates, which exhibited the highest concentrations during the dry season. A total of 22 copepod taxa was identified, of which the most abundant were Oithona hebes, Oithona oswaldocruzi, Acartia tonsa, Paracalanus quasimodo, Euterpina acutifrons and Pseudodiaptomus marshi. Copepodites and nauplii were also recorded. Mean total copepod abundance varied from 710.73 ± 897 individuals (ind.)·m?3 at the inner station to 236,486 ± 398,360 ind.·m?3 near the mouth of the estuary (outermost station). The results reflected rainfall‐influenced oscillations in hydrological variables, mainly salinity, which determined shifts in the distribution of copepods and their community structure within the study area. This pattern may be typical of estuaries in the ACZ with similar hydrodynamic and hydrological attributes that are not influenced by the Amazon River plume.  相似文献   

16.
The results of the U.S. Mussel Watch Monitoring Program for the period 1976–1978 for trace metals and artificial radionuclides in bivalves are presented. The substances analysed included Ag, Cu, Zn, Cd, Ni, Pb, 238Pu, 239+240Pu and 241Am. The analyses of organic substances will be presented elsewhere. The concentrations of these substances in the bivalves may reflect upwelling processes, anthropogenic inputs or natural levels. Off the California coast, mussels show markedly elevated Pu and Cd concentrations in coastal areas adjacent to the most intensive upwelling zones. Elevated levels of Pb, for example, are found in organisms living adjacent to highly urbanized places. The general patterns of distribution repeat themselves year after year at a given site. Thus, it is concluded that annual monitoring activities may not be necessary and that a frequency of sampling of several or so years may be more appropriate to identify pollution problems. Finally, national or regional baselines for metal concentrations in bivalves from unpolluted waters are proposed. National baselines for Pb in the west coast mussels of 1·0 parts 10?6 and for Ag in east coast mussels of 0·05 parts 10?6 are suggested.  相似文献   

17.
Soluble uranium concentrations in the Ogeechee and Savannah Rivers are 0.046 ± 0.005 and 0.026 ± 0.01 μg/l, respectively. Particulate concentrations are approximately similar in the Ogeechee River but are about four times the soluble concentration in the Savannah River. River end-member 234U/238U ratios range from 1.04 ± 0.04 to 1.08 ± 0.12. Observations suggest that uranium is removed from estuarine waters at low salinities during low discharge.  相似文献   

18.
Eighteen short cores were analyzed for major and trace metals (Al, Fe, Ca, Mg, Mn, Si, K, Ti, Pb, Zn, Cu, Ni, Cr), 210Pb, 137Cs, and other sediment characteristics, so as to describe the chronology of pollution and calculate metal concentration factors and fluxes. Substantial evidence was found that trace metal profiles are influenced by anthropogenic sources and by changes in sediment composition. Only Zn presents concentrations (up to 13.1 μmol g) and concentration factors (1.3 to 13.2) that can be attributed to heavy contamination. Pb, Cu and Ni, in this order, are less significant. The areal distribution of concentrations and inventories reflects the importance of direct sources, in particular the industrial area of Porto Marghera and the Dese river. The inventories of excess metals, above pre-industrial levels, were determined for each core and the three different parts of the study area, the amounts of Zn accumulated in sediments are 11.0 Mmol, 5.1 Mmol and 0.37 Mmol in the Campalto, S. Erasmo, and Palude di Cona areas, respectively. Ruxes were also calculated and compared with those suggested for the atmospheric delivery by Cochran et al. [(1995)b. Atmospheric fluxes of heavy metal contaminants to the Venice Lagoon, Rapp. Comm. Int. Mer Médit., 34, 136.], the atmospheric contribution is predominant or significant in many cases, especially at sites far from the major local inputs. Concentrations and fluxes show a significant increase in the anthropogenic metal supply starting from the second decade of this century, with maximum inputs in the period between the (1930)s and the (1970)s. At some stations a decrease in heavy metal contamination of surficial sediments was found and this could be ascribed to a reduced input of pollutants in recent years.  相似文献   

19.
Metal-organic complexes were isolated from coastal seawater by adsorption onto octadecyl-bonded silica (SEP-PAK cartridges) and injected into a high-performance liquid chromatograph. Trace metals were identified in the eluate by a four-channel non-dispersive atomic fluorescence detector. Organic complexes of copper, zinc, iron, magnesium, nickel and manganese were found to be present but no complexes of chromium or cadmium were detected. The complexes covered a wide range of polarities with no specific complexes being predominant. Interference from the stainless-steel chromatograph was negligible. The technique provides a minimum estimate of the amount of metal organics and it is suggested that a significant fraction of the metal organics present are too polar to be completely retained by the SEP-PAK cartridges. Typical values of the amounts of trace metal isolated by this technique corresponded to concentrations in the original seawater of >65 ngl?1 (Cu), >27 ngl?1 (Fe) and >41 ngl?1 (Zn).  相似文献   

20.
The chemical speciation of iron was determined in the Southern Ocean along a transect from 48 to 70°S at 20°E. Dissolved iron concentrations were low at 0.1–0.6 nM, with average concentrations of 0.25±0.13 nM. Organic iron complexing ligands were found to occur in excess of the dissolved iron concentration at 0.72±0.23 nM (equivalent to an excess of 0.5 nM), with a complex stability of log KFeL′=22.1±0.5 (on the basis of Fe3+ and L′). Ligand concentrations were higher in the upper water column (top 200 m) suggesting in situ production by microorganisms, and less at the surface consistent with photochemical breakdown. Our data are consistent with the presence of stable organic iron-complexing ligands in deep global ocean waters at a background level of ∼0.7 nM. It has been suggested that this might help stabilise iron at levels of ∼0.7 nM in deep ocean waters. However, much lower iron concentrations in the waters of the Southern Ocean suggest that these ligands do not prevent the removal of iron (by scavenging or biological uptake) to well below the concentration of these ligands. Scavenging reactions are probably inhibited by such ligand competition, so it is likely that biological uptake is the chief cause for the further removal of iron to these low levels in waters that suffer from very low iron inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号