首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ITRF2008: an improved solution of the international terrestrial reference frame   总被引:53,自引:38,他引:15  
ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16?years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010?ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: ?0.5, ?0.9 and ?4.7?mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3?mm/yr. The estimated formal errors of these parameters are 0.2?mm and 0.2?mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8?mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1?cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2?ppb (8?mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.  相似文献   

2.
Tide gauge measurements are used for a variety of scientific purposes, not least of which are the definition of vertical data and the detection of long-term variations in mean sea level. GPS measurements at tide gauge sites provide a means of separating local verticl motions from sea level rise, and a means of unifying vertical data in a single reference system. This paper describes a GPS survey to determine the positions and heights of reference stations at South African tide gauge sites. The data were processed in baseline mode using a commercial software package. The heights of the tide gauge stations relative to the fixed ITRF reference station HRAO were determined at a precision of around 3 cm – better than 0.1 ppm. Analysis of the error sources showes that use of the precise ephemeris contributed to a substantial improvement in accuracy, as did the use of ionosphere-free fixed integer baseline solutions. Variations in the antenna phase centers also contributed significant changes in height. ? 2001 John Wiley & Sons, Inc.  相似文献   

3.
IGS08: the IGS realization of ITRF2008   总被引:22,自引:6,他引:16  
On April 17, 2011, the International GNSS Service (IGS) stopped using the IGS05 reference frame and adopted a new one, called IGS08, as the basis of its products. The latter was derived from the latest release of the International Terrestrial Reference Frame (ITRF2008). However, the simultaneous adoption of a new set of antenna phase center calibrations by the IGS required slight adaptations of ITRF2008 positions for 65 of the 232 IGS08 stations. The impact of the switch from IGS05 to IGS08 on GNSS station coordinates was twofold: in addition to a global transformation due to the frame change from ITRF2005 to ITRF2008, many station coordinates underwent small shifts due to antenna calibration updates, which need to be accounted for in any comparison or alignment of an IGS05-consistent solution to IGS08. Because the heterogeneous distribution of the IGS08 network makes it sub-optimal for the alignment of global frames, a smaller well-distributed sub-network was additionally designed and designated as the IGS08 core network. Only 2?months after their implementation, both the full IGS08 network and the IGS08 core network already strongly suffer from the loss of many reference stations. To avoid a future crisis situation, updates of IGS08 will certainly have to be considered before the next ITRF release.  相似文献   

4.
The 2008 DGFI realization of the ITRS: DTRF2008   总被引:11,自引:11,他引:0  
A new realization of the International Terrestrial System was computed at the ITRS Combination Centre at DGFI as a contribution to ITRF2008. The solution is labelled DTRF2008. In the same way as in the DGFI computation for ITRF2005 it is based on either normal equation systems or estimated parameters derived from VLBI, SLR, GPS and DORIS observations by weekly or session-wise processing. The parameter space of the ITRS realization comprises station positions and velocities and daily resolved Earth Orientation Parameters (EOP), whereby for the first time also nutation parameters are included. The advantage of starting from time series of input data is that the temporal behaviour of geophysical parameters can be investigated to decide whether the parameters can contribute to the datum realization of the ITRF. In the same way, a standardized analysis of station position time series can be performed to detect and remove discontinuities. The advantage of including EOP in the ITRS realization is twofold: (1) the combination of the coordinates of the terrestrial pole—estimated from all contributing techniques—links the technique networks in two components of the orientation, leading to an improvement of consistency of the Terrestrial Reference Frame (TRF) and (2) in their capacity as parameters common to all techniques, the terrestrial pole coordinates enhance the selection of local ties as they provide a measure for the consistency of the combined frame. The computation strategy of DGFI is based on the combination of normal equation systems while at the ITRS Combination Centre at IGN solutions are combined. The two independent ITRS realizations provide the possibility to assess the accuracy of ITRF by comparison of the two frames. The accuracy evaluation was done separately for the datum parameters (origin, orientation and scale) and the network geometry. The accuracy of the datum parameters, assessed from the comparison of DTRF2008 and ITRF2008, is between 2–5?mm and 0.1–0.8?mm/year depending on the technique. The network geometry (station positions and velocities) agrees within 3.2?mm and 1.0?mm/year. A comparison of DTRF2008 and ITRF2005 provides similar results for the datum parameters, but there are larger differences for the network geometry. The internal accuracy of DTRF2008—that means the level of conservation of datum information and network geometry within the combination—was derived from comparisons with the technique-only multi-year solutions. From this an internal accuracy of 0.32?mm for the VLBI up to 3.3?mm for the DORIS part of the network is found. The internal accuracy of velocities ranges from 0.05?mm/year for VLBI to 0.83?mm/year for DORIS. The internal consistency of DTRF2008 for orientation can be derived from the analysis of the terrestrial pole coordinates. It is estimated at 1.5–2.5?mm for the GPS, VLBI and SLR parts of the network. The consistency of these three and the DORIS network part is within 6.5?mm.  相似文献   

5.
Although there are over 1,800 globally distributed tide gauge stations, only a few hundred of them are suitable for monitoring and analyzing global mean sea level (MSL) changes. This is because several tide gauge records span short periods of time and therefore their trend estimates are adversely affected by unmodeled systematic sea level changes such as seasonal, interannual, decadal variations. This limitation can be improved by using more elaborate models that account for systematic fluctuations in MSL for shorter time-series. In this study, analytic expressions were derived to analyze and quantify the epoch-by-epoch and lump-sum effects of these systematic changes to the local MSL trend estimates as a function of the time-series‘ lengths. The numerical results reveal that systematic MSL variations, particularly transient/episodic ones, if they are not properly modeled or omitted from the models, will bias the trend estimates for the tide gauge data series around the world by up to 0.6 mm/year for the 50-year time-series that are needed for more reliable inferences about global MSL. Random effects, which are not a factor in estimating MSL trends for the long-term (>50 years) time-series, need to be scrutinized together with the systematic errors for time-series shorter than 50 years.  相似文献   

6.
The establishment of a long-term stable global reference frame is important for studying sea level records for, e.g., climate-related studies. GPS stations connected to the tide gauge benchmarks provide the necessary technique. However, the analysis of existing GPS solutions showed inconsistencies within the time series especially for the height component. To solve related issues, in 2001 the IGS Tide Gauge Benchmark Monitoring Pilot Project was established. The aim is the processing and re-processing of GPS data of stations at or near tide gauges in order to provide homogeneous and high-quality estimates of the vertical motion. A second objective is the establishment, maintenance and expansion of existing network of GPS stations at tide gauges. During the recent years six different analysis centers have processed overlapping GPS at tide gauge networks and are providing individual solutions allowing now to provide a combined solution. The ansatz for the combination is explained and quality measures are given. In addition, on the basis of the reconstruction of sea level anomalies, the benefit of using the combined TIGA solution is demonstrated.  相似文献   

7.
The Global Positioning System is a constellation of 24–28 satellites, which can be used to define a global terrestrial reference frame. Daily offsets between a GPS defined frame and ITRF2000 have been estimated using more than a decade of GPS observations from 1990–2001. A linear fit to the full span of data shows agreement between the two frames at the level of –1 ppb and –0.1 ppb/year for scale, 5 mm and 0 mm/year for the X component of center of mass, –2 mm and –3 mm/year for the Y component, and 4 mm and 6 mm/year for the Z component. GPS is a viable tool for defining the global reference frame either alone, or in combination with other geodetic techniques. Electronic Publication  相似文献   

8.
In the frame of the International DORIS Service (IDS), the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)/Collecte Localisation Satellites (CLS) Analysis Center (LCA) processes DORIS measurements from the SPOT, TOPEX/Poseidon and Envisat satellites and provides weekly station coordinates of the whole network to the IDS. Based on DORIS measurements, the horizontal and vertical velocities of 57 DORIS sites are computed. The 3D positions and velocities of the stations with linear motion are estimated simultaneously from the 12-year (1993–2004) combined normal equation matrix. We include 35 DORIS sites assumed to be located in the stable zones of 9 tectonic plates. For the motion of these plates, we propose a model (LCAVEL-1) of angular velocities in the ITRF2000 reference frame. Based on external comparison with the most recent global plate models (PB2002, REVEL, GSRM-1 and APKIM2000) and on internal analysis, we estimate an average velocity error of the DORIS solution of less than 3 mm/year. The LCAVEL-1 model presents new insights of the Somalia/Nubia pair of plates, as the DORIS technique has the advantage of having a few stations located on those two plates. We also computed (and provide in this article) the horizontal motion of the sites located close to plate boundaries or in the deformation zones defined in contemporary models. These computations could be used in further analysis for these particular regions of the Earth not moving as rigid plates.  相似文献   

9.
IGS contribution to the ITRF   总被引:2,自引:0,他引:2  
We examine the contribution of the International GNSS Service (IGS) to the International Terrestrial Reference Frame (ITRF) by evaluating the quality of the incorporated solutions as well as their major role in the ITRF formation. Starting with the ITRF2005, the ITRF is constructed with input data in the form of time series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth Orientation Parameters. Analysis of time series of station positions is a fundamental first step in the ITRF elaboration, allowing to assess not only the stations behavior, but also the frame parameters and in particular the physical ones, namely the origin and the scale. As it will be seen, given the poor number and distribution of SLR and VLBI co-location sites, the IGS GPS network plays a major role by connecting these two techniques together, given their relevance for the definition of the origin and the scale of the ITRF. Time series analysis of the IGS weekly combined and other individual Analysis Center solutions indicates an internal precision (or repeatability) <2 mm in the horizontal component and <5 mm in the vertical component. Analysis of three AC weekly solutions shows generally poor agreement in origin and scale, with some indication of better agreement when the IGS started to use the absolute model of antenna phase center variations after the GPS week 1400 (November 2006).  相似文献   

10.
针对全球导航卫星系统(GNSS)数据处理过程中旧的ITRF 2008参考框架现势性不足及新的ITRF2014框架在数据的数量与质量、参数模型、测站的分布合理性上均有提高等状况,该文以陆态网的最近两年的观测数据为例,对比分析了ITRF2008和ITRF2014框架下各测站的坐标、基线长度、水平速度场的差异,以期为当前高精度GNSS数据处理提供参考。实验表明:两个框架下的成果经基准转换后,测站在X、Y、Z方向的差异均为毫米级;基线差异平均在1 mm以内;水平速度场差值的最大值为5.75(mm·a~(-1)),最小值为-4.88(mm·a~(-1)),平均值为-0.45(mm·a~(-1)),方向上差值的平均值为0.02rad。目前两个框架的差异对一般工程应用基本上可以忽略,但对地震监测的陆态网来说,则必须考虑。  相似文献   

11.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   

12.
我国高精度GPS陆海垂直运动监测网的建立与精度分析   总被引:19,自引:0,他引:19  
为了将验潮站得到的海平面变化信息与难潮站所在陆地垂直运动分离开来,获得海平面变化的绝对信息,在我国沿海5个难潮站建立了一个高精度的GPS陆海垂直运动监测网,采用GAMIT和Glook软件对数据进行处理,并顾及影响高程因素中由于方位不对称引起的大气延迟改进的Niell模型,我们最终得到GPS监测网毫米级的高程精度。  相似文献   

13.
Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05–0.7 milliarcseconds (mas). Estimations of the Earth rotation phase \(\Delta \)UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for \(\Delta \)UT is based on the standard deviation of the estimates with respect to the reference C04 solution.  相似文献   

14.
北斗坐标系   总被引:2,自引:0,他引:2  
北斗坐标系是北斗卫星导航系统的大地基准.本文在扼要叙述背景情况之后,首先给出了北斗坐标系原点、尺度、定向的定义和参考椭球的定义和导出常数;其次介绍北斗坐标系的首次实现,这次实现由北斗系统的8个监测站在历元2010.0的ITRF2014框架下的坐标和速度体现,它们是通过处理一个包括8个监测站的全球GNSS网4期GPS数据、框架对准与监测站坐标序列的线性回归拟合得到的;最后就参考框架的更新周期、监测站境外布设和连续观测、精密星历的生成与发布,北斗坐标系的标准化问题进行了讨论,并提出一些建议.  相似文献   

15.
基于夏威夷海平面研究中心提供的南极6个验潮站多年逐时潮位数据,本文首先利用迭代调和分析对初步观测数据进行补缺,并在此基础上计算月平均海平面,最后利用功率谱分析、最大熵谱分析、奇异谱分析等方法确定海平面的相对变化速率和振动周期。研究表明,南极海平面相对上升速率与全球其他区域基本一致(3mm/a-7mm/a),但是在个别测站(例如:Esperanza)的上升速度非常明显,达到厘米级。  相似文献   

16.
文中以298个验潮站作为研究对象,采用广义高斯-马尔科夫模型(GGM)、自回归滑动平均模型(ARMA)以及分形自回归聚合滑动平均模型(ARFIMA)三种模型,对验潮站坐标时间序列噪声模型特性及海平面变化趋势进行估计分析,并探讨了时间跨度对验潮站速度估计的影响. 实验结果表明:验潮站坐标时间序列主要呈现为ARFIMA(1,0)、ARFIMA(2,2)、ARMA (1,0) 噪声特性;验潮站速度估计结果表明64.77%的站点速度值所处区间为0~4 mm/a,平均海平面速度为1.25 mm/a,整体处于上升趋势. 随着时间跨度的增加,验潮站坐标序列速度不确定度逐渐由发散趋于收敛,大于110 a的时间跨度有助于获取稳健的验潮站速度估计值.   相似文献   

17.
We develop a method to evaluate the terrestrial reference frame (TRF) scale rate error using Global Positioning System (GPS) satellite antenna phase center offset (APCO) parameters and apply it to ITRF2008. We search for the TRF in which z-APCO parameters have the smallest drift. In order to provide realistic error bars for the z-APCO drifts, we pay attention to model periodic variations and auto-correlated noise processes in the z-APCO time series. We will show that the GPS scale rate with respect to a frame is, as a first approximation, proportional to the estimated mean z-APCO trend if that frame is used to constrain station positions. Thus, an ITRF2008 scale rate error between ?0.27 and ?0.06 mm/yr depending on the GPS analysis center can be estimated, which demonstrates the high quality of the newly constructed ITRF2008. We will also demonstrate that the traditional estimates of the GPS scale rate from 7-parameter similarity transformations are consistent with our newly derived GPS scale rates with respect to ITRF2008 within two sigmas. We find using International GNSS Service (IGS) products that the traditional approach is relevant for scale rate determination even if some of the z-APCO values supplied by the IGS were not simultaneously calibrated. As the scale rate is related to the accuracy of vertical velocities, our estimates supply a conservative evaluation that can be used for error budget computation.  相似文献   

18.
The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS–SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.  相似文献   

19.
采用麻省理工学院开发的GAMIT/GLOBK软件,将2015年-2016年全球347个IGS站观测数据分七个子网解算,得到一个固定的参考框架来解算云南及周边地区的35个全球卫星导航系统(GNSS)基准站的坐标,测站坐标均方根误差水平方向在0.7 mm以内,垂直方向在0.3 mm以内,水平方向的坐标重复性精度在5 mm以内,垂向坐标的重复性精度大多数在2.5 cm以内;与在ITRF2014下解算的测站坐标、基线长度、水平速度场结果对比表明:测站坐标存在系统误差,水平方向上的差异在8.5 mm以内,垂直方向上在3 cm以内;基线长度差异在2 mm以内,水平速度场在数值上存在毫米级的差异,方向上基本一致.   相似文献   

20.
CGCS2000板块模型构建   总被引:1,自引:0,他引:1  
基于中国地壳运动观测网络2001—2010年跨度长达10年的观测数据,采用基准优选、变异点数据分段处理等策略,计算获得ITRF2005框架下高精度速度场。同时针对国际上现有的NNR NUVEL1A、APKIM2005、PB2002等板块模型在中国区域适应性差,基于中国地质构造特性及实际速度场解算结果,构建了中国20个二级板块模型CPM-CGCS2000。采用本文提出的用板块模型参数将站点归算至CGCS2000的方法对板块模型进行外部检核,并用此方法验证所建的二级块体模型,精度可达2~3 cm。与国际上现有比较成熟的速度场模型———ITRF2005、APKIM2005、PB2002、NUVEL1A及国内文献[1—2]的板块模型进行的比较表明,CPM-CGCS2000板块模型实际精度优于目前现有的模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号