首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the elastic buckling of porous solids was investigated using a lattice spring model (LSM). The capability of the LSM to solve elastic buckling problems was comprehensively verified by comparing well-established numerical and analytical solutions. Following this, the buckling of a porous solid was studied, in which two porous structures were considered, ie, the random porous model and the Voronoi porous model. The results reveal that both the porosity and the shape of the pores influence the elastic buckling bearing capacity of the porous solid. Finally, the mechanical responses of a porous solid with an extra high porosity (0.85) were numerically investigated. Our numerical results demonstrated that the nonlinear elastic response of the porous solid might come from its mesoscale elastic buckling. This work shows the ability and promise of using the LSM as a fundamental numerical tool for the deep investigation of the buckling mechanical behavior of porous solids.  相似文献   

2.
The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space, coordination number, contact surface area, and types of contact. In the present work, some of these microscopic properties are computed, from 3D images obtained by X-ray tomography of biocemented sand. These properties are then used as an input in current analytical models to estimate the elastic properties (Young and shear moduli) and the strength properties (Coulomb cohesion). For the elastic properties, the analytical estimates (contact cement theory model) are compared with classical bounds, self-consistent estimate and numerical results obtained by direct computation (FEM computation) on the same 3D images. Concerning the cohesion, an analytical model initially developed to estimate the cohesion due to suction in unsaturated soils is modified to evaluate the macroscopic cohesion of biocemented sands. Such analytical model is calibrated on experimental data obtained from triaxial tests performed on the same biocemented sand. In overall, the presented results point out the important role of some microstructural parameters, notably those related to the contact, on such effective parameters.  相似文献   

3.
An efficient numerical technique has been used to compute the deformation of pores of arbitrary shape embedded in a homogeneous elastic solid under the influence of applied stresses. The scheme is based on the boundary-element method, where single linear elements are used to generate solutions that satisfy prescribed boundary conditions. These solutions can be employed to describe the behavior of elastic moduli and other petrophysical properties in porous rocks. The numerical algorithm allows computation of the stress field induced by the pores in the solid. In this way, the effect of the interactions between pores caused by stress concentrations can be studied from a quantitative point of view. To test the algorithm, some interesting results are compared with existing models, for special cases available in the literature. Also, a model for the compressibility and porosity of sedimentary rocks, as a function of applied hydrostatic stress, was generated by mixing some realistic pore geometries generated with the numerical algorithm. Results were in good agreement with data obtained from selected samples of sandstones.  相似文献   

4.
基于线弹性断裂力学裂隙面张开位移及剪切位移理论公式,考虑裂隙存在常法向和常切向刚度情况,研究了含单个裂隙岩体加载过程中由于裂隙存在而附加的弹性应变能。基于应变能等效方法并假设两种裂隙变形模型--非均匀变形模型和均匀变形模型,研究了二维非贯通裂隙岩体的等效杨氏模量和等效剪切模量解析表达式。研究结果表明,对于贯通裂隙规则分布情况,均匀变形模型得到的解析解与Amadei等的结果一致;对于非贯通裂隙正态分布情况,考虑裂隙相互作用的非均匀变形模型解明显低估裂隙岩体的等效杨氏模量和等效剪切模量,而考虑裂隙相互作用的均匀变形模型解与有限元数值解的偏差在10%以内。得到的解析表达式在一定条件下可以作为裂隙岩体等效弹性模量评价方法之一。  相似文献   

5.
This paper presents the results of theoretical investigation on the dynamic coupling of an ideal fluid‐porous medium‐elastic half‐space system subjected to SV waves to study the effect of sediment on the seismic response of dams for reservoirs that are deposited with a significant amount of sediment after a long period of operation. The effects of the porous medium and the incident wave angle on dynamic pressures in the overlying ideal fluid are analyzed, and the reflection and transmission coefficients of the wave at the material interfaces are derived using an analytical solution in terms of displacement potentials. The numerical test of modeling shows that the dynamic pressures significantly depend on the properties of porous medium. The fully saturated porous medium reduces the response peaks slightly, while the partially saturated porous medium causes a considerable increase in the resonance peaks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
An energy approach is proposed as a complement to the stress approach commonly considered for investigating soil desiccation cracking. The elastic strain energies before and after crack initiation are estimated by both numerical and analytical solutions. The energy released by cracking is then compared with the fracture energy to discuss crack initiation conditions. This leads to combined energy and stress conditions for crack initiation following Leguillon's theory. An approximate analytical solution is derived from a variational formulation of the porous elastic body equations. A cohesive zone model and finite element code are used to simulate crack propagation in an unsaturated porous body. This analysis shows that the energy criterion is reached before the stress criterion, and this can explain unstable crack propagation at the beginning. The approximate analytical solution allows predicting correctly the crack depth and opening in its initiation stage.  相似文献   

7.
This paper presents first the applications of uniqueness and strain localization analysis of saturated porous media, where localization of deformation into well defined narrow zones in a saturated porous medium is studied in terms of discontinuous bifurcation theory. A generalized plasticity constitutive model and a Mohr–Coulomb model are used in both the theoretical and numerical analyses of shear band formations. The critical hardening moduli and shear band angle for localization are computed, and quantitative results are given for both constitutive models. Numerical results previously obtained and new ones are confirmed by this analytical and numerical investigation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
控制隧道开挖引起的土体沉降变形是劈裂注浆的主要目的之一,隧道在劈裂注浆后复合土体的等效弹性参数取值直接关系着隧道在劈裂注浆后沉降变形的预测精度。首先在对已有劈裂扩散模型研究的基础上,按面积等效原则提出了隧道劈裂注浆后复合土体的二维简化等效单元体模型,并基于均质化理论按变形协调原则推导了二维简化单元体模型的等效弹性参数解析解。然后采用有限元方法分别计算并分析了模型在简化前后的等效弹性参数;同时把二维简化等效单元体模型的有限元计算结果和解析计算结果也做了对比分析。最后基于解析结果分析了土体和浆液结石体各自的弹性参数以及浆液注入率对等效弹性参数的影响。结果表明:(1)按面积等效原则对模型进行简化处理的方法是可行的,可以按照简化模型进行弹性阶段的理论分析;(2)解析结果与有限元结果具有良好的一致性,说明了解析结果的合理性;(3)复合土体的等效弹性模量和等效泊松比主要受浆液注入率和浆液固结体本身模量的影响;浆液固结体的泊松比对等效弹性模量的影响几乎可以忽略。  相似文献   

9.
A micro-mechanics-based elastic–plastic model is proposed to describe mechanical behaviors of porous rock-like materials. The porous rock is considered as a composite material composed of a solid matrix and spherical pores. The effective elastic properties are determined from the classical Mori–Tanaka linear homogenization scheme. The solid matrix verifies a pressure-dependent Mises–Schleicher-type yield criterion. Based on the analytical macroscopic yield criterion previously determined with a nonlinear homogenization procedure (Shen et al. in Eur J Mech A/Solids 49:531–538, 2015), a complete elastic–plastic model is formulated with the determination of a specific plastic hardening law and plastic potential. The micro-mechanics-based elastic–plastic model is then implemented for a material point in view of simulations of homogeneous laboratory tests. The proposed model is applied to describe mechanical behaviors of two representative porous rocks, sandstone and chalk. Comparisons between numerical results and experimental data are presented for triaxial compression tests with different confining pressures, and they show that the micro-mechanical model is able to capture main features of mechanical behaviors of porous rock-like rocks.  相似文献   

10.
Unsaturated soils are considered as porous continua, composed of porous skeleton with its pores filled by water and air. The governing partial differential equations (PDE) are derived based on the mechanics for isothermal and infinitesimal evolution of unsaturated porous media in terms of skeleton displacement vector, liquid, and gas scalar pressures. Meanwhile, isotropic linear elastic behavior and liquid retention curve are presented in terms of net stress and capillary pressure as constitutive relations. Later, an explicit 3D Laplace transform domain fundamental solution is obtained for governing PDE and then closed‐form analytical transient 3D fundamental solution is presented by means of analytical inverse Laplace transform technique. Finally, a numerical example is presented to validate the assumptions used to derive the analytical solution by comparing them with the numerically inverted ones. The transient fundamental solutions represent important features of the elastic wave propagation theory in the unsaturated soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
熊浩  邱战洪  王小岗 《岩土力学》2018,39(12):4659-4664
无限元是一种有效的人工边界,可用于处理弹性波的传播问题。在传统动力无限元的基础上,提出了一种采用分向插值技术的新型动力无限元,详细地推导了这种无限元的形函数,建立了完全解析形式的刚度矩阵,以提高计算效率,采用该无限元边界,计算了弹性介质中的线源Lamb问题,通过对比解析解答的地基表面位移,验证了该无限元的有效性。算例分析表明,采用此类无限元时,有限元单元边长建议取不超过1/8剪切波波长,网格边界到激励源点的距离宜取5倍剪切波波长。无限单元中的幅值衰减系数对计算结果影响甚微,建议取较小值。  相似文献   

12.
Wave propagation both in one- and in two-dimensional saturated elastic porous media is analysed by means of a two-field finite element model with silent boundaries. An extension of the elastic ‘multidirectional’ transmitting boundary to two-phase media is developed to simulate the silent boundary condition. The theoretical assessment and the numerical formulation of the first-order silent boundary technique is presented in detail. Some examples are used to demonstrate the reliability of the first-order method, especially for problems with plane and axisymmetric waves having various angles of incidence. Finally, the wave propagation along a pile shaft is presented, to simulate a common non-destructive dynamic pile test.  相似文献   

13.
The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the source location and forces generated during an earthquake as an inverse problem in structural dynamics. Based on this analogy, a simple model for the basic earthquake source is proposed. The unknown source is assumed to be a sequence of impulses acting at locations yet to be found. These unknown impulses and their locations are found using the normal mode expansion along with a minimization of mean square error. The medium is assumed to be finite, elastic, homogeneous, layered and horizontal with a specific set of boundary conditions. Detailed results are obtained for Uttarkashi earthquake. The impulse locations exhibit a linear structure closely associated with the causative fault. The results obtained are shown to be in good agreement with reported values. The proposed engineering model is then used to simulate the acceleration time histories at a few recording stations. The earthquake source in terms of a sequence of impulses acting at different locations is applied on a 2D finite elastic medium and acceleration time histories are found using finite element methods. The synthetic accelerations obtained are in close match with the recorded accelerations.  相似文献   

14.
15.
Rocks are naturally filled with cracks and pores that are saturated with one or more fluid phases. Many problems in rock mechanics, petroleum engineering, geophysics, etc. deal with cracks and discontinuities in rock formations. These problems should consider effects of a porous medium. Displacement discontinuity method (DDM) as an indirect boundary element method is particularly ideal for problems involving fractures and discontinuities. However, the DDM in its original form is limited to elastic problems. The paper uses a fundamental solution of a point displacement discontinuity in poroelastic medium to obtain the solution for a poroelastic DDM. Then it introduces a numerical formulation and implementation for the poroelastic DDM in a code named CEP-DDM (Constant Element Poroelastic DDM). The accuracy and validity of the proposed solution and the newly developed code are verified by two analytical solutions, another numerical solution, and some field measurements. These results showed good agreement between CEP-DDM and other methods’ results. The verifications prove the accuracy and applicability of the proposed numerical model in a wide range of real-world problems.  相似文献   

16.
劈裂注浆可以有效改善土体的变形参数,大大降低土体在受力状态改变时的变形量,对劈裂注浆后复合土体的等效变形参数进行研究十分重要。在综合分析劈裂注浆扩散机制和工程应用实际的基础上,基于均质化理论提出了劈裂注浆后复合土体的三维单元体几何模型,按等效原则给出了浆-土体积及受力分配关系模型图;接着基于横向各向同性本构关系推导了模型的等效弹性模量和等效泊松比的解析解。然后采用有限元方法取得了模型特定条件下的等效弹性模量和等效泊松比,并与解析结果进行对比分析。最后把模型和相应的解析结果引入Flac3D岩土工程专业分析软件,结合一个热力隧道工程实例对隧道劈裂注浆后关键位置的沉降进行预测分析,并与实测值进行了对比。研究表明:对所提出的计算模型,解析计算与有限元方法计算结果吻合度较高,说明了解析结果的正确性;基于该模型及其解析结果得到的隧道开挖后的沉降预测值与实测值具有良好的一致性,说明所提出的模型和相应的解析计算方法具有一定的可靠性和实用性。  相似文献   

17.
Scattering of an elastic wave by a cylindrical shell embedded in poroelastic medium is investigated theoretically with the assumption that the shell material is also a porous elastic medium. The porous medium is modellized via Biot's theory and the scattering by cylindrical shell is expressed by the definition of scattering matrix. The normal mode expansion technique is employed for analysing the scattering field, and the asymptotic solutions of displacements, stresses and pore pressure are derived. Two limiting cases‐scattering by a poroelastic cylinder in Biot medium and a elastic cylindrical shell in elastic medium are obtained from the general solutions. The dispersion curves of displacement amplitude at the interface of shell and medium is compared with the case of elastic shell. The scattering amplitude associated with the fast, slow and transverse waves are identified by numerical simulation. Furthermore, the influence of the poroelastic property of shell material on scattering amplitude is analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Combined effects of matrix plastic compressibility and void shape are investigated for ductile porous materials. To this end, a spheroidal volume containing a confocal spheroidal (prolate or oblate) void subjected to uniform strain rate boundary conditions has been first studied. A Green type matrix is chosen as a prototype for investigating effects of plastic compressibility. This is carried out by using a kinematics limit analysis theory from which a closed‐form expression of the macroscopic criterion is established for the considered class of materials. These results are then extended to ductile porous materials made up of a green matrix containing randomly oriented spheroidal voids. In the framework of a two‐step homogenization procedure, the obtained results are implemented to describe the macroscopic behavior of double porous materials involving spherical voids at the microscale and randomly oriented and distributed spheroidal voids at the mesoscale. For validation purpose, the new derived criteria are assessed and validated by comparing their predictions to available upper bounds and numerical data from literature. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
A framework for estimating aquifer hydraulic properties using sinusoidal pumping is presented that (1) derives analytical solutions for confined, leaky, and partially penetrating conditions; (2) compares the analytical solutions with a finite element model; (3) establishes a field protocol for conducting sinusoidal aquifer tests; and (4) estimates aquifer parameters using the analytical solutions. The procedure is demonstrated in one surficial and two confined aquifers containing potentially contaminated water in coastal plain sediments at the Savannah River site, a federal nuclear facility. The analytical solutions compare favorably with finite-element solutions, except immediately adjacent to the pumping well where the assumption of zero borehole radius is not valid. Estimated aquifer properties are consistent with previous studies for the two confined aquifers, but are inconsistent for the surficial aquifer; conventional tests yielded estimates of the specific yield—consistent with an unconfined response—while the shorter-duration sinusoidal perturbations yielded estimates of the storativity—consistent with a confined, elastic response. The approach minimizes investigation-derived wastes, a significant concern where contaminated fluids must be disposed of in an environmentally acceptable manner. An additional advantage is the ability to introduce a signal different from background perturbations, thus easing detection.  相似文献   

20.
崔翔  胡明鉴  朱长歧  汪稔  王新志  王天民 《岩土力学》2020,41(11):3632-3640
孔隙是多孔介质内渗流的发生场所,与介质渗透性存在必然的联系。珊瑚砂因其特殊的物质来源和形成过程,较陆源砂具有截然不同的孔隙特性。通过一系列微观研究手段,从本质上揭示了珊瑚砂特殊孔隙性质的原因。研究发现,从孔隙形状、孔喉尺寸和整体连通性3个角度描述孔隙性质较为合理。其中,孔隙形状用形状因子度量,孔喉尺寸包括孔隙半径和喉道半径,珊瑚砂多孔介质整体连通性利用配位数进行描述。而影响孔隙形状、孔喉尺寸和整体连通性的主导因素包括颗粒形状和颗粒表面粗糙度两方面。其中颗粒形状主要影响孔隙形状、喉道尺寸、孔喉尺寸离散性和介质内部连通性的均匀分布情况。颗粒表面粗糙度主要影响孔隙形状、孔隙形状离散性、孔隙尺寸和介质整体连通性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号