首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of efficient numerical techniques and high speed computation facilities for carrying out the nonlinear dynamic analysis of soil-structure interaction problems and the analysis of ground response due to earthquake loading increase the demand for proper estimation of dynamic properties of soil at small strain as well as at large strain levels. Accurate evaluation of strain dependent dynamic properties of soil such as shear modulus and damping characteristics along with the liquefaction potential are the most important criteria for the assessments of geotechnical problems involving dynamic loading. In this paper the results of resonant column tests and undrained cyclic triaxial tests are presented for Kasai River sand. A new correlation for dynamic shear damping (Ds) and maximum dynamic shear modulus (Gmax) are proposed for the sand at small strain. The proposed relationships and the observed experimental data match quite well. The proposed relationships are also compared with the published relationships for other sands. The liquefaction potential of the sand is estimated at different relative densities and the damping characteristics at large strain level is also reported. An attempt has been made to correlate the Gmax with the cyclic strength of the soil and also with the deviator stress (at 1% strain) from static triaxial tests.  相似文献   

2.
This paper investigates the postcyclic behavior of low-plasticity silt with excess pore pressure ratio (Ru) less than 1. The testing specimens were prepared from Mississippi River Valley (MRV) silt. Full and no reconsolidation were allowed after specimens were subjected to various excess pore pressure ratios due to cyclic loading in a cyclic triaxial cell, and then monotonic shear tests were conducted. The effect of the Ru on shear strength and stiffness at small and large deformation was investigated. It was found that a Ru greater than 0.70 is a prerequisite of large increase in volumetric strain and undrained shear strength for specimens with full reconsolidation. In contrast, a significant decrease in yield shear strength and initial stiffness was noted for specimens without reconsolidation. In comparison to published data for sands, the silt experienced significant volumetric strain due to reconsolidation at lower Ru, indicating that the specimen fabric was modified or strained at lower Ru.  相似文献   

3.
This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss׳ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1<160 m/s), with this strain being about 0.03–0.05% for earthquake magnitude, Mw≈7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by overconsolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1–0.3%. These conclusions are validated by application to case histories corresponding to Mw≈7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.  相似文献   

4.
The relationship between turbulent fluid motions and sediment particle motions over mobile sand dunes was investigated by using a laser Doppler velocimeter and an acoustic backscatter system in laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory. Profiles of acoustic backscatter from particles and at-a-point turbulence data were collected while translating both measurement devices downstream at the speed of mobile dune bedforms. The resulting data set was used to examine the frequency (recurrence frequency) at which the fluctuating backscatter and fluid velocity signals exceeded magnitude thresholds based on the standard deviation (σ) of the local velocity and the magnitude the acoustic signal resulting from backscatter from suspended particles. The slope of the downstream and vertical velocity recurrence frequencies generally indicated a gradually increasing recurrence time with increasing elevation. The recurrence frequency for acoustic backscatter data was not strongly variable with elevation. The closest correspondence between the recurrence frequencies of sediment backscatter and vertical velocities at the 1σ magnitude threshold was in a region defined by X/L〈0.4 and y〈6 cm. The downstream velocity was most closely related to backscatter in a small region at 0.4〈X/L〈0.8 and less than 3-4 cm from the bed.  相似文献   

5.
The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γγto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.  相似文献   

6.
Stiffness degradation of natural fine grained soils during cyclic loading   总被引:5,自引:0,他引:5  
Cyclic behavior of natural fine grained soils under a broad range of strains were investigated considering the effects of plasticity index and changes in confining pressures based on cyclic triaxial tests. A total of 98 stress controlled cyclic triaxial tests were conducted on normally consolidated and slightly overconsolidated samples. The investigation was divided into two parts. The first part consists of stress controlled cyclic triaxial tests under different stress amplitudes that were conducted to estimate the modulus reduction and the thresholds between nonlinear elastic, elasto-plastic and viscoplastic behavior. The second part involves the investigation of the undrained stress–strain behavior of fine grained soils under irregular cyclic loadings. The results showed that the elastic threshold is approximately equal to 90% of Gmax. Another transition point was defined as the flow threshold where the value of tangent of shear modulus ratio changes for the second time. Simple empirical relationships to estimate the dynamic shear modulus and damping ratio was formulated and compared with the similar empirical relationships proposed in the literature. The results provide useful guidelines for preliminary estimation of dynamic shear modulus and damping ratio values for fine grained soils based on laboratory tests.  相似文献   

7.
A one-dimensional constitutive model, developed for the nonlinear ground response analysis of layered soil deposits, is calibrated and validated experimentally in this paper. The small number of parameters renders the model easily implementable, yet quite flexible in effectively reproducing almost any type of experimentally observed hysteretic soil behavior. In particular, the model generates realistic shear modulus and damping curves as functions of shear strain, as well as stress–strain hysteresis loops. The model is calibrated against three sets of widely-used published shear modulus and damping (G : γ and ξ : γ) curves and a library of parameter values is assembled to facilitate its use. The model, along with a developed explicit finite-difference code, NL-DYAS, for analyzing the wave propagation in layered hysteretic soil deposits, is tested against established constitutive models and numerical tools such as Cyclic1D [12] and SHAKE [42], and validated against experimental data from two centrifuge tests. Emphasis is given on the proper assessment of the Vs profile in the centrifuge tests, on the role of soil nonlinearity, and on comparisons of two inelastic codes (NL-DYAS and Cyclic1D) with equivalent linear (SHAKE) analysis.  相似文献   

8.
小应变硬化土模型参数的确定与敏感性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
地下工程施工引起的土体扰动区可分为剧烈扰动区、扰动区、微扰动区和未扰动区。为全面反映土体在扰动下的应力路径和力学响应,必须考虑全应变范围的土体特性,尤其是小应变范围内的力学响应,因此对小应变硬化土本构模型关键参数(初始剪切模量和剪应变阀值)的确定方法进行介绍。开展上海典型软土的三轴固结排水剪切试验和固结试验研究,给出确定上海软土小应变硬化土模型(HSSmall)参数的方法,建议采用原位测试的方法确定土体的初始弹性模量。基于土单元数值模拟进行初始弹性模量和剪应变阀值的参数敏感性分析。随着初始弹性模量的增大,初始压缩曲线与卸载-再压缩曲线的斜率均增大。由于对应的回弹模量不变,初始弹性模量与回弹模量的差值增大,应变与偏应力试验曲线的回滞环宽度也随之增大。随着剪应变阀值的增大,初始压缩曲线和再压缩曲线的近似直线段增长,在同样剪应力情况下,土体的应变值减小,土体保持初始弹性模量刚度的区间增大。  相似文献   

9.
黏土类土石混合体常作为路基填料在工程中广泛应用,然而其在交通荷载作用下的动力特性方面研究较少。为此,本文以0.05 Lc(Lc为圆柱试样直径)为土体、块石分类阈值,根据土石混合体中砾石掺量、侧限压力的不同,采用自振柱仪对其在小应变(10^-6~10^-4)下的动剪切模量和阻尼比进行研究。结果表明:土石混合体最大动剪切模量随砾石掺量的增加而不断增大,且在20%~40%掺量区间内增幅最大,随侧限压力的增加而增大,且增幅逐渐变小;在应变幅值相同的条件下,动剪切模量衰变程度随砾石掺量的增加而不断减少,且在20%~40%掺量区间内减幅最大,随侧限压力的增加而减小,且减幅逐渐变小;最小、最大阻尼比随砾石掺量和侧限压力的增加而减少。结合试验结果分别从颗粒“骨架”结构性、动态结构稳定性、材料密实度、能量耗散等方面阐述块石掺量和侧限压力对土石混合体动剪切模量和阻尼比的影响机理。最后采用优化Hardin-Drnevich模型建立砾石掺量、侧限压力与土石混合体动力特性参数(最大动剪切模量、参考剪应变、最大阻尼比、最小阻尼比)之间的估算公式,以期为土石混合路基的动力设计和施工提供指导。  相似文献   

10.
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang MS5.7 earthquake in 2012 and the Ludian MS6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.  相似文献   

11.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

12.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

13.
Mexico City high plasticity clays exhibit a small degree of nonlinearity for shear strains as large as 0.1%, which leads to both moderate shear stiffness degradation and small to medium damping increment, even for long duration subduction strong ground motions, such as the 8.1Mw 1985Michoacan earthquake. Nonetheless, current seismic design criteria of strategic infrastructure used worldwide have striven for having larger return periods for establishing the seismic environment, considering recent large magnitude (M>8.5Mw) events. This paper presents the study of the seismic response of typical high plasticity clays found in the so-called Texcoco Lake, in the surrounding of Mexico City valley, for larger to extreme earthquakes. The shear wave velocity profile was characterized using a down-hole test. The seismic environment was established from a set of uniform hazard response spectra developed for a nearby rock outcrop for return periods of 125, 250, 475 and 2475 years. A time-domain spectral matching was used to develop acceleration time histories compatible with each uniform hazard response spectrum. Both frequency and time domain site response analyses were carried out considering each seismic scenario. Ground nonlinearities were clearly observed in the soil response during extreme ground shaken, which increases rapidly with the return period. This fact must be taken into account to avoid costly and potentially unsafe seismic designs.  相似文献   

14.
In seismically active regions, faults nucleate, propagate, and form networks that evolve over time. To simulate crustal faulting processes, including the evolution of fault-zone properties, a rheological model must incorporate concepts such as damage rheology that describe the various stages of the seismic cycle (strain localization, subcritical crack growth and macroscopic failure) while accounting for material degradation and healing and off-fault deformation. Here we study the fundamental patterns of strain-localisation within the framework of a continuum damage rheology by performing a shear band analysis (linear instability analysis) and comparing predictions of shear band orientations with numerical results of the nonlinear problem. We find (analytically and numerically) that the angle between the shear band and the less compressive (transverse) direction is between 47° in compression tests with a strain ratio of 0.25 (highly confined compression test), and 60° for a strain ratio higher than 1.4 (axial compression and transverse extension). In addition we find that shear bands exhibit local dilation (I 1 > 0) in a wide range of strain ratios excluding only simulations with highly confined compression (which yield compacting shear bands or non-localized deformation). Finally, we discuss the applicability of the damage model for simulating deformation in the seismogenic, brittle crust.  相似文献   

15.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

16.
Shear wave velocity (V S) can be obtained using seismic tests, and is viewed as a fundamental geotechnical characteristic for seismic design and seismic performance evaluation in the field of earthquake engineering. To apply conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests (SPT) and piezocone penetration tests (CPTu) were undertaken together with a variety of borehole seismic tests for a range of sites in Korea. Statistical modeling of the in-situ testing data identified correlations between V S and geotechnical in-situ penetration data, such as blow counts (N value) from SPT and CPTu data including tip resistance (q t), sleeve friction (f s), and pore pressure ratio (B q). Despite the difference in strain levels between conventional geotechnical penetration tests and borehole seismic tests, it is shown that the suggested correlations in this study is applicable to the preliminary determination of V S for soil deposits.  相似文献   

17.
True Triaxial Stresses and the Brittle Fracture of Rock   总被引:3,自引:0,他引:3  
This paper reviews the efforts made in the last 100 years to characterize the effect of the intermediate principal stress σ 2 on brittle fracture of rocks, and on their strength criteria. The most common theories of failure in geomechanics, such as those of Coulomb, and Mohr, disregard σ 2 and are typically based on triaxial testing of cylindrical rock samples subjected to equal minimum and intermediate principal stresses (σ 3=σ 2). However, as early as 1915 Böker conducted conventional triaxial extension tests (σ 1=σ 2) on the same Carrara marble tested earlier in conventional triaxial compression by von Kármán that showed a different strength behavior. Efforts to incorporate the effect of σ 2 on rock strength continued in the second half of the last century through the work of Nadai, Drucker and Prager, Murrell, Handin, Wiebols and Cook, and others. In 1971 Mogi designed a high-capacity true triaxial testing machine, and was the first to obtain complete true triaxial strength criteria for several rocks based on experimental data. Following his pioneering work, several other laboratories developed equipment and conducted true triaxial tests revealing the extent of σ 2 effect on rock strength (e.g., Takahashi and Koide, Michelis, Smart, Wawersik). Testing equipment emulating Mogi's but considerably more compact was developed at the University of Wisconsin and used for true triaxial testing of some very strong crystalline rocks. Test results revealed three distinct compressive failure mechanisms, depending on loading mode and rock type: shear faulting resulting from extensile microcrack localization, multiple splitting along the σ 1 axis, and nondilatant shear failure. The true triaxial strength criterion for the KTB amphibolite derived from such tests was used in conjunction with logged breakout dimensions to estimate the maximum horizontal in situ stress in the KTB ultra deep scientific hole.  相似文献   

18.
The tensor relations describing the shear deviatoric strains and rotation strains may be presented as vector relations in a special coordinate system, e.g., in the diagonal or off-diagonal one. However, these fields can be also presented in the 4D invariant forms by means of invariant Dirac tensors. We present 4D relativistic relations for the invariant shear deviatoric strain and rotation strain vectors closely related to a fracture process in solids and to the molecular strains (shear and rotational) in fluids. These shear and rotation strains may interact with the radial derivatives of pressure along the propagation directions.  相似文献   

19.
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.  相似文献   

20.
《国际泥沙研究》2022,37(5):539-552
A detailed analysis of horizontal and vertical particulate matter (PM) fluxes during wind erosion has been done, based on measurements of PM smaller than 10, 2.5, and 1.0 μm, at windward and leeward positions on a measuring field. The three fractions of PM measurement are differently influenced by the increasing wind and shear velocities of the wind. The measured concentrations of the coarser fractions of the fine dust, PM10, and PM2.5, increase with wind and shear velocity, whereas the PM1.0 concentrations show no clear correlation to the shear velocity. The share of PM2.5 on PM10 depends on the measurement height and wind speed and varies between 4 and 12 m/s at the 1 m height ranging from 25% to 7% (average 10%), and at the 4 m height from 39% to 23% (average 30%). Although general relationships between wind speed, PM concentration, and horizontal and vertical fluxes could be found, the contribution of the measuring field was very low, as balances of incoming and outgoing fluxes show. Consequently, the measured PM concentrations are determined from a variety of sources, such as traffic on unpaved roads, cattle drives, tillage operations, and wind erosion, and thus, represent all components of land use and landscape structure in the near and far surroundings of the measuring field. The current results may reflect factors from the landscape scale rather than the influence of field-related variables. The measuring devices used to monitor PM concentrations showed differences of up to 20%, which led to considerable deviations when determining total balances. Differences up to 67% between the calculated fluxes prove the necessity of a previous calibration of the devices used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号