首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Klauder wavelet removal before vibroseis deconvolution   总被引:1,自引:0,他引:1  
The spiking deconvolution of a field seismic trace requires that the seismic wavelet on the trace be minimum phase. On a dynamite trace, the component wavelets due to the effects of recording instruments, coupling, attenuation, ghosts, reverberations and other types of multiple reflection are minimum phase. The seismic wavelet is the convolution of the component wavelets. As a result, the seismic wavelet on a dynamite trace is minimum phase and thus can be removed by spiking deconvolution. However, on a correlated vibroseis trace, the seismic wavelet is the convolution of the zero-phase Klauder wavelet with the component minimum-phase wavelets. Thus the seismic wavelet occurring on a correlated vibroseis trace does not meet the minimum-phase requirement necessary for spiking deconvolution, and the final result of deconvolution is less than optimal. Over the years, this problem has been investigated and various methods of correction have been introduced. In essence, the existing methods of vibroseis deconvolution make use of a correction that converts (on the correlated trace) the Klauder wavelet into its minimum-phase counterpart. The seismic wavelet, which is the convolution of the minimum-phase counterpart with the component minimum-phase wavelets, is then removed by spiking deconvolution. This means that spiking deconvolution removes both the constructed minimum-phase Klauder counterpart and the component minimum-phase wavelets. Here, a new method is proposed: instead of being converted to minimum phase, the Klauder wavelet is removed directly. The spiking deconvolution can then proceed unimpeded as in the case of a dynamite record. These results also hold for gap predictive deconvolution because gap deconvolution is a special case of spiking deconvolution in which the deconvolved trace is smoothed by the front part of the minimum-phase wavelet that was removed.  相似文献   

2.
3.
Approximate deconvolution by means of Wiener filters has become standard practice in seismic data-processing. It is well-known that addition of a certain percentage of noise energy to the autocorrelation of the signal wavelet leads to a filter that does not increase, or even reduces, the noise level on the seismogram. This noise addition will, in general, cause a minimum phase signal to become mixed phase. A technique is presented for the calculation of the optimum-lag shaping filter for a contaminated signal wavelet. The advantages of this method over the more conventional approach are that it needs less arithmetic operations and that it automatically gives the filter with the optimum combination of shaping performance and noise reduction.  相似文献   

4.
On seismograms recorded at sea bubble pulse oscillations can present a serious problem to an interpreter. We propose a new approach, based on generalized linear inverse theory, to the solution of the debubbling problem. Under the usual assumption that a seismogram can be modelled as the convolution of the earth's impulse response and a source wavelet we show that estimation of either the wavelet or the impulse response can be formulated as a generalized linear inverse problem. This parametric approach involves solution of a system of equations by minimizing the error vector (ΔX = Xobs– Xcal) in a least squares sense. One of the most significant results is that the method enables us to control the accuracy of the solution so that it is consistent with the observational errors and/or known noise levels. The complete debubbling procedure can be described in four steps: (1) apply minimum entropy deconvolution to the observed data to obtain a deconvolved spike trace, a first approximation to the earth's response function; (2) use this trace and the observed data as input for the generalized linear inverse procedure to compute an estimated basic bubble pulse wavelet; (3) use the results of steps 1 and 2 to construct the compound source signature consisting of the primary pulse plus appropriate bubble oscillations; and (4) use the compound source signature and the observed data as input for the generalized linear inverse method to determine the estimated earth impulse response—a debubbled, deconvolved seismogram. We illustrate the applicability of the new approach with a set of synthetic seismic traces and with a set of field seismograms. A disadvantage of the procedure is that it is computationally expensive. Thus it may be more appropriate to apply the technique in cases where standard analysis techniques do not give acceptable results. In such cases the inherent advantages of the method may be exploited to provide better quality seismograms.  相似文献   

5.
Statistical deconvolution, as it is usually applied on a routine basis, designs an operator from the trace autocorrelation to compress the wavelet which is convolved with the reflectivity sequence. Under the assumption of a white reflectivity sequence (and a minimum-delay wavelet) this simple approach is valid. However, if the reflectivity is distinctly non-white, then the deconvolution will confuse the contributions to the trace spectral shape of the wavelet and reflectivity. Given logs from a nearby well, a simple two-parameter model may be used to describe the power spectral shape of the reflection coefficients derived from the broadband synthetic. This modelling is attractive in that structure in the smoothed spectrum which is consistent with random effects is not built into the model. The two parameters are used to compute simple inverse- and forward-correcting filters, which can be applied before and after the design and implementation of the standard predictive deconvolution operators. For whitening deconvolution, application of the inverse filter prior to deconvolution is unnecessary, provided the minimum-delay version of the forward filter is used. Application of the technique to seismic data shows the correction procedure to be fast and cheap and case histories display subtle, but important, differences between the conventionally deconvolved sections and those produced by incorporating the correction procedure into the processing sequence. It is concluded that, even with a moderate amount of non-whiteness, the corrected section can show appreciably better resolution than the conventionally processed section.  相似文献   

6.
Wiener deconvolution is generally used to improve resolution of the seismic sections, although it has several important assumptions. I propose a new method named Gold deconvolution to obtain Earth’s sparse-spike reflectivity series. The method uses a recursive approach and requires the source waveform to be known, which is termed as Deterministic Gold deconvolution. In the case of the unknown wavelet, it is estimated from seismic data and the process is then termed as Statistical Gold deconvolution. In addition to the minimum phase, Gold deconvolution method also works for zero and mixed phase wavelets even on the noisy seismic data. The proposed method makes no assumption on the phase of the input wavelet, however, it needs the following assumptions to produce satisfactory results: (1) source waveform is known, if not, it should be estimated from seismic data, (2) source wavelet is stationary at least within a specified time gate, (3) input seismic data is zero offset and does not contain multiples, and (4) Earth consists of sparse spike reflectivity series. When applied in small time and space windows, the Gold deconvolution algorithm overcomes nonstationarity of the input wavelet. The algorithm uses several thousands of iterations, and generally a higher number of iterations produces better results. Since the wavelet is extracted from the seismogram itself for the Statistical Gold deconvolution case, the Gold deconvolution algorithm should be applied via constant-length windows both in time and space directions to overcome the nonstationarity of the wavelet in the input seismograms. The method can be extended into a two-dimensional case to obtain time-and-space dependent reflectivity, although I use one-dimensional Gold deconvolution in a trace-by-trace basis. The method is effective in areas where small-scale bright spots exist and it can also be used to locate thin reservoirs. Since the method produces better results for the Deterministic Gold deconvolution case, it can be used for the deterministic deconvolution of the data sets with known source waveforms such as land Vibroseis records and marine CHIRP systems.  相似文献   

7.
In certain areas continuous Vibroseis profiling is not possible due to varying terrain conditions. Impulsive sources can be used to maintain continuous coverage. While this technique keeps the coverage at the desired level, for the processing of the actual data there is the problem of using different sources resulting in different source wavelets. In addition, the effect of the free surface is different for these two energy sources. The approach to these problems consists of a minimum-phase transformation of the two-sided Vibroseis data by removal of the anticipation component of the autocorrelation of the filtered sweep and a minimum-phase transformation of the impulsive source data by replacement of the recording filter operator with its minimum-phase correspondent. Therefore, after this transformation, both datasets show causal wavelets and a conventional deconvolution (spike or predictive) may be used. After stacking, a zero-phase transformation can be performed resulting in traces well suited for computing pseudo-acoustic impedance logs or for application of complex seismic trace analysis. The solution is also applicable to pure Vibroseis data, thereby eliminating the need for a special Vibroseis deconvolution. The processing steps described above are demonstrated on synthetic and actual data. The transformation operators used are two-sided recursive (TSR) shaping filters. After application of the above adjustment procedure, remaining signal distortions can be removed by modifying only the phase spectrum or both the amplitude and phase spectra. It can be shown that an arbitrary distortion defined in the frequency domain, i.e., a distortion of the amplitude and phase spectrum, is noticeable in the time section as a two-sided signal.  相似文献   

8.
Deconvolution is an essential step for high-resolution imaging in seismic data processing. The frequency and phase of the seismic wavelet change through time during wave propagation as a consequence of seismic absorption. Therefore, wavelet estimation is the most vital step of deconvolution, which plays the main role in seismic processing and inversion. Gabor deconvolution is an effective method to eliminate attenuation effects. Since Gabor transform does not prepare the information about the phase, minimum-phase assumption is usually supposed to estimate the phase of the wavelet. This manner does not return the optimum response where the source wavelet would be dominantly a mixed phase. We used the kurtosis maximization algorithm to estimate the phase of the wavelet. First, we removed the attenuation effect in the Gabor domain and computed the amplitude spectrum of the source wavelet; then, we rotated the seismic trace with a constant phase to reach the maximum kurtosis. This procedure was repeated in moving windows to obtain the time-varying phase changes. After that, the propagating wavelet was generated to solve the inversion problem of the convolutional model. We showed that the assumption of minimum phase does not reflect a suitable response in the case of mixed-phase wavelets. Application of this algorithm on synthetic and real data shows that subtle reflectivity information could be recovered and vertical seismic resolution is significantly improved.  相似文献   

9.
Bussgang算法是针对褶积盲源分离问题提出的,本文将其用于地震盲反褶积处理.由于广义高斯概率密度函数具有逼近任意概率密度函数的能力,从反射系数序列的统计特征出发,引入广义高斯分布来体现反射系数序列超高斯分布特征.依据反射系数序列的统计特征和Bussgang算法原理,建立以Kullback-Leibler距离为非高斯性度量的目标函数,并导出算法中涉及到的无记忆非线性函数,最终实现了地震盲反褶积.模型试算和实际资料处理结果表明,该方法能较好地适应非最小相位系统,能够同时实现地震子波和反射系数估计,有效地提高地震资料分辨率.  相似文献   

10.
Vibroseis is a source used commonly for inland seismic exploration. This non-destructive source is often used in urban areas with strong environmental noise. The main goal of seismic data processing is to increase the signal/noise ratio where a determinant step is deconvolution. Vibroseis seismic data do not meet the basic minimum-phase assumption for the application of spiking and predictive deconvolution, therefore various techniques, such as phase shift, are applied to the data, to be able to successfully perform deconvolution of vibroseis data.This work analyzes the application of deconvolution techniques before and after cross-correlation on a real data set acquired for high resolution prospection of deep aquifers. In particular, we compare pre-correlation spiking and predictive deconvolution with Wiener filtering and with post-correlation time variant spectral whitening deconvolution. The main result is that at small offsets, post cross-correlation spectral whitening deconvolution and pre-correlation spiking deconvolution yield comparable results, while for large offsets the best result is obtained by applying a pre-cross-correlation predictive deconvolution.  相似文献   

11.
地震子波处理的二步法反褶积方法研究   总被引:17,自引:11,他引:6       下载免费PDF全文
针对玛湖斜坡区三块三维地震资料和赛汉塔拉凹陷二块三维地震资料连片处理中的特点,结合地质任务和处理目标要求,提出了地震数据连片处理中的地震子波处理的方法.该方法主要体现了两次反褶积,一次是采用地表一致性反褶积,将不同震源的频带拓宽到一个标准上;再一次采用相位校正反褶积,将不同震源的数据校正到相同相位上.为了保证提取的相位校正反褶积算子稳定,采用叠后地震道提取(主要考虑到叠后地震道信噪比高,算子稳定性强),然后将该算子应用到叠前地震道,进行相位校正.  相似文献   

12.
Deterministic deconvolution of seismic data recorded with a non-minimum phase source, such as a sparker, requires an estimate of the source signature. Present methods of deterministic signature estimation and deconvolution require additional field equipment (near- or far-field hydrophones), or else make a deterministic estimate of the effective source signature (the free-field source signature convolved with source and receiver ghosts). By analyzing the direct arrival signal to normal hydrophone groups it is shown that extraction of the free-field source signature from this signal is possible for a spherically symmetric source, and it is demonstrated that the use of this signature for a preliminary deterministic deconvolution gives better results on sparker data than minimum-phase whitening deconvolution applied on its own. The applicability of the method to non-spherically symmetric sources, such as arrays, is also discussed. This paper is published with the permission of the Director, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.  相似文献   

13.
Multicomponent seismic data are acquired by orthogonal geophones that record a vectorial wavefield. Since the single components are not independent, the processing should be performed jointly for all the components. In this contribution, we use hypercomplex numbers, specifically quaternions, to implement the Wiener deconvolution for multicomponent seismic data. This new approach directly derives from the complex Wiener filter theory, but special care must be taken in the algorithm implementation due to the peculiar properties of quaternion algebra. Synthetic and real data examples show that quaternion deconvolution, either spiking or predictive, generally performs superiorly to the standard (scalar) deconvolution because it properly takes into account the vectorial nature of the wavefields. This provides a better wavelet estimation and thus an improved deconvolution performance, especially when noise affects differently the various components.  相似文献   

14.
A model of the seismic trace is generally given as a convolution between the propagating wavelet and the reflectivity series of the earth and normally it is assumed that a white noise is added to the trace. The knowledge of the propagating wavelet is the basic point to estimate the reflectivity series from the seismic trace. In this paper a statistical method of wavelet extraction from several seismic traces, assuming the wavelet to be unique, is discussed. This method allows one to obtain the propagating wavelet without any classical limitative assumptions on the phase spectrum. Furthermore, a phase unwrapping method is suggested and some statistical properties of the phase spectrum of the reflectivity traces are examined.  相似文献   

15.
Design procedures and characteristics of three stacking filters are discussed which may find application in various three-dimensional velocity filtering problems. These filters are derived in the time-domain as optimum multichannel Wiener filters. Random stationary functions are assumed as stochastic models for the seismic traces. All power and crosspower spectra which are the basic elements of the multichannel normal equations are statistically averaged according to specific three-dimensional considerations. Various properties of the input traces may be incorporated in the design of the optimum filters. With fairly general assumptions about the input these filters are deterministic in the sense that they are applicable to a broad class of input traces with similar statistics in amplitudes and arrival times of signals.  相似文献   

16.
We propose a three‐step bandwidth enhancing wavelet deconvolution process, combining linear inverse filtering and non‐linear reflectivity construction based on a sparseness assumption. The first step is conventional Wiener deconvolution. The second step consists of further spectral whitening outside the spectral bandwidth of the residual wavelet after Wiener deconvolution, i.e., the wavelet resulting from application of the Wiener deconvolution filter to the original wavelet, which usually is not a perfect spike due to band limitations of the original wavelet. We specifically propose a zero‐phase filtered sparse‐spike deconvolution as the second step to recover the reflectivity dominantly outside of the bandwidth of the residual wavelet after Wiener deconvolution. The filter applied to the sparse‐spike deconvolution result is proportional to the deviation of the amplitude spectrum of the residual wavelet from unity, i.e., it is of higher amplitude; the closer the amplitude spectrum of the residual wavelet is to zero, but of very low amplitude, the closer it is to unity. The third step consists of summation of the data from the two first steps, basically adding gradually the contribution from the sparse‐spike deconvolution result at those frequencies at which the residual wavelet after Wiener deconvolution has small amplitudes. We propose to call this technique “sparsity‐enhanced wavelet deconvolution”. We demonstrate the technique on real data with the deconvolution of the (normal‐incidence) source side sea‐surface ghost of marine towed streamer data. We also present the extension of the proposed technique to time‐varying wavelet deconvolution.  相似文献   

17.
The success of signature deconvolution in optimizing both signal-to-noise ratio and time resolution in the seismic section depends critically upon obtaining an accurate estimate of the far-field source signature. Various deterministic estimation schemes have been proposed in recent years, most of which involve direct monitoring of source output within the water layer. As an alternative to elaborate and error-prone source monitoring schemes during data acquisition, a simple modification to any source array permits subsequent estimation of far-field signatures directly from reflected signal. The new method requires the inclusion within any chosen source array of a simple point source, the “reference” source. Initial experiments employed a water gun as the reference source, characterized by a concise implosive signature with peak-to-peak amplitude of approximately 2 bar·m within the seismic sprectrum. In operation the reference source is fired shortly before the main array (typically 2 s during initial trials) and the usual record length is extended by a similar amount. Each recorded trace then comprises two results: the subsurface response to the reference source signal followed by the response of the same subsurface to the main array. The disparities in source amplitudes and NMO differentials ensure that interference effects are negligible in the main recording. Time- or frequency-domain methods can be employed to extract the main array signature from the dual dataset or to invert this to some preferred wavelet simultaneously. As an additional benefit the reference source yields excellent high-resolution profiles of the shallow geology.  相似文献   

18.
Seismic data have still no enough temporal resolution because of band-limited nature of available data even if it is deconvolved. However, lower and higher frequency information belonging to seismic data is missing and it is not directly recovered from seismic data. In this paper, a method originally applied by Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N., 2004. Improving the time-resolution and signal–noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755–763.] which is the combination of the most widely used Wiener deconvolution and AR spectral extrapolation in frequency domain is briefly reviewed and is applied to seismic data to improve temporal resolution further. The missing frequency information is optimally recovered by forward and backward extrapolation based on the selection of a high signal–noise ratio (SNR) of signal spectrum deconvolved in signal processing technique. The combination of the two methods is firstly tested on a variety of synthetic examples and then applied to a stacked real trace. The selection of necessary parameters in Wiener filtering and in extrapolation are discussed in detail. It is used an optimum frequency windows between 3 and 10 dB drops by comparing results from these drops, while frequency windows are used as standard between 2.8 and 3.2 dB drops in study of Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N., 2004. Improving the time-resolution and signal–noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755–763.]. The results obtained show that the application of the purposed signal processing technique considerably improves temporal resolution of seismic data when compared with the original seismic data. Furthermore, AR based spectral extrapolated data can be almost considered as reflectivity sequence of layered medium. Consequently, the combination of Wiener deconvolution and AR spectral extrapolation can reveal some details of seismic data that cannot be observed in raw signal or which lost during the previous processing.  相似文献   

19.
Methods of minimum entropy deconvolution (MED) try to take advantage of the non-Gaussian distribution of primary reflectivities in the design of deconvolution operators. Of these, Wiggins’(1978) original method performs as well as any in practice. However, we present examples to show that it does not provide a reliable means of deconvolving seismic data: its operators are not stable and, instead of whitening the data, they often band-pass filter it severely. The method could be more appropriately called maximum kurtosis deconvolution since the varimax norm it employs is really an estimate of kurtosis. Its poor performance is explained in terms of the relation between the kurtosis of a noisy band-limited seismic trace and the kurtosis of the underlying reflectivity sequence, and between the estimation errors in a maximum kurtosis operator and the data and design parameters. The scheme put forward by Fourmann in 1984, whereby the data are corrected by the phase rotation that maximizes their kurtosis, is a more practical method. This preserves the main attraction of MED, its potential for phase control, and leaves trace whitening and noise control to proven conventional methods. The correction can be determined without actually applying a whole series of phase shifts to the data. The application of the method is illustrated by means of practical and synthetic examples, and summarized by rules derived from theory. In particular, the signal-dominated bandwidth must exceed a threshold for the method to work at all and estimation of the phase correction requires a considerable amount of data. Kurtosis can estimate phase better than other norms that are misleadingly declared to be more efficient by theory based on full-band, noise-free data.  相似文献   

20.
Two different techniques for performing time-variable Wiener deconvolution are compared using stacked seismic data. The conventional technique involves the empirical division of the data into a number of gates and the determination of time-invariant deconvolution filters for each gate. In the second technique, the deconvolution filter is recomputed after each time increment from a fixed-length data gate sliding along the trace. This scheme has the advantage that no a priori segmentation of the data is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号