首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To support the adoption of precision agricultural practices in horticultural tree crops, prior research has investigated the relationship between crop vigour (height, canopy density, health) as measured by remote sensing technologies, to fruit quality, yield and pruning requirements. However, few studies have compared the accuracy of different remote sensing technologies for the estimation of tree height. In this study, we evaluated the accuracy, flexibility, aerial coverage and limitations of five techniques to measure the height of two types of horticultural tree crops, mango and avocado trees. Canopy height estimates from Terrestrial Laser Scanning (TLS) were used as a reference dataset against height estimates from Airborne Laser Scanning (ALS) data, WorldView-3 (WV-3) stereo imagery, Unmanned Aerial Vehicle (UAV) based RGB and multi-spectral imagery, and field measurements. Overall, imagery obtained from the UAV platform were found to provide tree height measurement comparable to that from the TLS (R2 = 0.89, RMSE = 0.19 m and rRMSE = 5.37 % for mango trees; R2 = 0.81, RMSE = 0.42 m and rRMSE = 4.75 % for avocado trees), although coverage area is limited to 1–10 km2 due to battery life and line-of-sight flight regulations. The ALS data also achieved reasonable accuracy for both mango and avocado trees (R2 = 0.67, RMSE = 0.24 m and rRMSE = 7.39 % for mango trees; R2 = 0.63, RMSE = 0.43 m and rRMSE = 5.04 % for avocado trees), providing both optimal point density and flight altitude, and therefore offers an effective platform for large areas (10 km2–100 km2). However, cost and availability of ALS data is a consideration. WV-3 stereo imagery produced the lowest accuracies for both tree crops (R2 = 0.50, RMSE = 0.84 m and rRMSE = 32.64 % for mango trees; R2 = 0.45, RMSE = 0.74 m and rRMSE = 8.51 % for avocado trees) when compared to other remote sensing platforms, but may still present a viable option due to cost and commercial availability when large area coverage is required. This research provides industries and growers with valuable information on how to select the most appropriate approach and the optimal parameters for each remote sensing platform to assess canopy height for mango and avocado trees.  相似文献   

2.
用地基激光雷达提取单木结构参数——以白皮松为例   总被引:6,自引:1,他引:5  
以白皮松(Pinus bungeana Zucc)为研究对象,针对地基激光雷达TLS扫描的3维点云数据在单株木垂直方向的分布特征,提出了一种基于体元化方法的树干覆盖度变化检测方法,获取单木枝下高;然后根据获取的枝下高引入2维凸包算法获取垂直方向分层树冠轮廓,并计算树冠体积和冠幅;同时获取的单木参数还有胸径与树高。结果表明:单木枝下高的估测精度较高,R2与RMSE分别为0.97 m和0.21 m;胸径估测结果的R2与RMSE分别为0.79 cm和1.07 cm;采用逐步线性回归方法建立单木树冠体积与其他单木参数的相关关系,模型变量包括冠幅、叶子填充树冠长度和胸径,样本数为20,模型的R2与RMSE分别是0.967 m3和2.64 m3。本文方法能较准确地估测枝下高,TLS数据具有对树冠结构3维建模的潜力。  相似文献   

3.
Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest (Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI(i,j) = (Ri − Rj)/(Ri + Rj), where Ri and Rj = reflectance in any two bands) were evaluated using calibration (n = 33) and test (n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors.  相似文献   

4.
In the present study, we aimed to map canopy heights in the Brazilian Amazon mainly on the basis of spaceborne LiDAR and cloud-free MODIS imagery with a new method (the Self-Organizing Relationships method) for spatial modeling of the LiDAR footprint. To evaluate the general versatility, we compared the created canopy height map with two different canopy height estimates on the basis of our original field study plots (799 plots located in eight study sites) and a previously developed canopy height map. The compared canopy height estimates were obtained by: (1) a stem diameter at breast height (D) – tree height (H) relationship specific to each site on the basis of our original field study, (2) a previously developed DH model involving environmental and structural factors as explanatory variables (Feldpausch et al., 2011), and (3) a previously developed canopy height map derived from the spaceborne LiDAR data with different spatial modeling method and explanatory variables (Simard et al., 2011). As a result, our canopy height map successfully detected a spatial distribution pattern in canopy height estimates based on our original field study data (r = 0.845, p = 8.31 × 10−3) though our canopy height map showed a poor correlation (r = 0.563, p = 0.146) with the canopy height estimate based on a previously developed model by Feldpausch et al. (2011). We also confirmed that the created canopy height map showed a similar pattern with the previously developed canopy height map by Simard et al. (2011). It was concluded that the use of the spaceborne LiDAR data provides a sufficient accuracy in estimating the canopy height at regional scale.  相似文献   

5.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.  相似文献   

6.
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.  相似文献   

7.
This study investigates the applicability of estimating chlorophyll and water content at canopy level through empirical models and band combinations. The main goal is to evaluate and compare the accuracy of these two approaches for estimating and mapping canopy chlorophyll and water content through canopy reflectance and spaceborne HJ1-A HSI data acquired over Yanzhou coal mining area. An experiment was carried out. Canopy spectral measurements were acquired in the field using an ASD spectroradiometer along with simultaneous in situ measurements of leaf chlorophyll content. We tested seven variables derived from canopy reflectance for detecting canopy chlorophyll and water content: (1) R, (2) Log(1/R), (3) Log(1/R)′, (4) FDR, (5) SDR, (6) CRR, (7) BD. Stepwise multiple linear regressions were used to select wavelengths from HJ1-A HSI image bands. Correlation analysis was also done between different band combinations and biochemistry. A statistically significant relationship between Log(1/R) and chlorophyll was found at canopy level (R2 = 0.516). SDR had the highest correlation with canopy water content (R2 = 0.490). In addition, relationship between normalized different band combinations and chlorophyll and water content is also significantly obvious (R2 = 0.577 and R2 = 0.615). Canopy chlorophyll content was estimated with the intermediate accuracy (R2 = 0.4144), while water content was estimated with an acceptable accuracy (R2 = 0.4592). Canopy chlorophyll and water content spatial distribution were mapped. Chlorophyll and water stress levels were quantified by comparing different environmental stressors.  相似文献   

8.
Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.  相似文献   

9.
Non-destructive and accurate estimation of crop biomass is crucial for the quantitative diagnosis of growth status and timely prediction of grain yield. As an active remote sensing technique, terrestrial laser scanning (TLS) has become increasingly available in crop monitoring for its advantages in recording structural properties. Some researchers have attempted to use TLS data in the estimation of crop aboveground biomass, but only for part of the growing season. Previous studies rarely investigated the estimation of biomass for individual organs, such as the panicles in rice canopies, which led to the poor understanding of TLS technology in monitoring biomass partitioning among organs. The objective of this study was to investigate the potential of TLS in estimating the biomass for individual organs and aboveground biomass of rice and to examine the feasibility of developing universal models for the entire growing season. The field plots experiments were conducted in 2017 and 2018 and involved different nitrogen (N) rates, planting techniques and rice varieties. Three regression approaches, stepwise multiple linear regression (SMLR), random forest regression (RF) and linear mixed-effects (LME) modeling, were evaluated in estimating biomass with extensive TLS and biomass data collected at multiple phenological stages of rice growth across the entire season. The models were calibrated with the 2017 dataset and validated independently with the 2018 dataset.The results demonstrated that growth stage in LME modeling was selected as the most significant random effect on rice growth among the three candidates, which were rice variety, growth stage and planting technique. The LME models grouped by growth stage exhibited higher validation accuracies for all biomass variables over the entire season to varying degrees than SMLR models and RF models. The most pronounced improvement with a LME model was obtained for panicle biomass, with an increase of 0.74 in R2 (LME: R2 = 0.90, SMLR: R2 = 0.16) and a decrease of 1.15 t/ha in RMSE (LME: RMSE =0.79 t/ha, SMLR: RMSE =2.94 t/ha). Compared to SMLR and RF, LME modeling yielded similar estimation accuracies of aboveground biomass for pre-heading stages, but significantly higher accuracies for post-heading stages (LME: R2 = 0.63, RMSE =2.27 t/ha; SMLR: R2 = 0.42, RMSE =2.42 t/ha; RF: R2 = 0.57, RMSE =2.80 t/ha). These findings implied that SMLR was only suitable for the estimation of biomass at pre-heading stages and LME modeling performed remarkably well across all growth stages, especially for post-heading. The results suggest coupling TLS with LME modeling is a promising approach to monitoring rice biomass at post-heading stages at high accuracy and to overcoming the saturation of canopy reflectance signals encountered in optical remote sensing. It also has great potential in the monitoring of other crops in cloud-cover conditions and the instantaneous prediction of grain yield any time before harvest.  相似文献   

10.
中国南方森林冠顶高度Lidar反演—以江西省为例   总被引:1,自引:0,他引:1  
董立新  李贵才  唐世浩 《遥感学报》2011,15(6):1308-1321
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好(R2=0.7325);阔叶林次之(R2=0.6095);混交林较差(R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。  相似文献   

11.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

12.
Defoliation is a key parameter of forest health and is associated with reduced productivity and tree mortality. Assessing the health of forests requires regular observations over large areas. Satellite remote sensing provides a cost-effective alternative to traditional ground-based assessment of forest health, but assessing defoliation can be difficult due to mixed pixels where vegetation cover is low or fragmented. In this study we apply a novel spectral unmixing technique, referred to as weighted Multiple Endmember Spectral Mixture Analysis (wMESMA), to Landsat 5-TM and EO-1 Hyperion data acquired over a Eucalyptus globulus (Labill.) plantation in southern Australia. This technique combines an iterative mixture analysis cycle allowing endmembers to vary on a per pixel basis (MESMA) and a weighting algorithm that prioritizes wavebands based on their robustness against endmember variability. Spectral mixture analysis provides an estimate of the physically interpretable canopy cover, which is not necessarily correlated with defoliation in mixed-aged plantations due to natural variation in canopy cover as stands age. There is considerable variability in the degree of defoliation as well as in stand age among sites and in this study we found that results were significantly improved by the inclusion of an age correction algorithm for both the multi-spectral (R2no age correction = 0.55 vs R2age correction = 0.73 for Landsat) and hyperspectral (R2no age correction = 0.12 vs R2age correction = 0.50 for Hyperion) image data. The improved accuracy obtained from Landsat compared to the Hyperion data illustrates the potential of applying SMA techniques for analysis of multi-spectral datasets such as MODIS and SPOT-VEGETATION.  相似文献   

13.
Sagebrush (Artemisia tridentata), a dominant shrub species in the sagebrush-steppe ecosystem of the western US, is declining from its historical distribution due to feedbacks between climate and land use change, fire, and invasive species. Quantifying aboveground biomass of sagebrush is important for assessing carbon storage and monitoring the presence and distribution of this rapidly changing dryland ecosystem. Models of shrub canopy volume, derived from terrestrial laser scanning (TLS) point clouds, were used to accurately estimate aboveground sagebrush biomass. Ninety-one sagebrush plants were scanned and sampled across three study sites in the Great Basin, USA. Half of the plants were scanned and destructively sampled in the spring (n = 46), while the other half were scanned again in the fall before destructive sampling (n = 45). The latter set of sagebrush plants was scanned during both spring and fall to further test the ability of the TLS to quantify seasonal changes in green biomass. Sagebrush biomass was estimated using both a voxel and a 3-D convex hull approach applied to TLS point cloud data. The 3-D convex hull model estimated total and green biomass more accurately (R2 = 0.92 and R2 = 0.83, respectively) than the voxel-based method (R2 = 0.86 and R2 = 0.73, respectively). Seasonal differences in TLS-predicted green biomass were detected at two of the sites (p < 0.001 and p = 0.029), elucidating the amount of ephemeral leaf loss in the face of summer drought. The methods presented herein are directly transferable to other dryland shrubs, and implementation of the convex hull model with similar sagebrush species is straightforward.  相似文献   

14.
Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural attributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a combination of airborne and satellite remote sensing. Both of these approaches have their strengths and limitations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural parameterization – recording and quantifying 3D structural detail that is not possible from manual field-based or airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the heterogeneity of landscapes in which they are embedded. Here we test the potential of long-range (>2000 m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS deviated from this baseline with increasing distance. Our results show that despite diluted point density and increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25–1.45 m) and canopy cover (RMSE = 5.67–15.91%) at distances of up to 500 m in open savanna woodlands. When aggregated to the same sampling grain as leading spaceborne vegetation products (10–30 m), our findings show potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger areas than traditional TLS sampling can provide.  相似文献   

15.
Hyperspectral sensing can provide an effective means for fast and non-destructive estimation of leaf nitrogen (N) status in crop plants. The objectives of this study were to design a new method to extract hyperspectral spectrum information, to explore sensitive spectral bands, suitable bandwidth and best vegetation indices based on precise analysis of ground-based hyperspectral information, and to develop regression models for estimating leaf N accumulation per unit soil area (LNA, g N m−2) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA under the various treatments. Then, normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the original spectrum and the first derivative spectrum were constructed within the range of 350–2500 nm, and their relationships with LNA were quantified. The results showed that both LNA and canopy hyperspectral reflectance in wheat changed with varied N rates, with consistent patterns across different cultivars and seasons. The sensitive spectral bands for LNA existed mainly within visible and near infrared regions. The best spectral indices for estimating LNA in wheat were found to be NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516), and the regression models based on the above four spectral indices were formulated as Y = 26.34x1.887, Y = 5.095x − 6.040, Y = 0.609 e3.008x and Y = 0.388x1.260, respectively, with R2 greater than 0.81. Furthermore, expanding the bandwidth of NDSI (R860, R720) and RSI (R990, R720) from 1 nm to 100 nm at 1 nm interval produced the LNA monitoring models with similar performance within about 33 nm and 23 nm bandwidth, respectively, over which the statistical parameters of the models became less stable. From testing of the derived equations, the model for LNA estimation on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) gave R2 over 0.79 with more satisfactory performance than previously reported models and physical models in wheat. It can be concluded that the present hyperspectral parameters of NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) can be reliably used for estimating LNA in winter wheat.  相似文献   

16.
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions.  相似文献   

17.
This study describes the retrieval of state variables (LAI, canopy chlorophyll, water and dry matter contents) for summer barley from airborne HyMap data by means of a canopy reflectance model (PROSPECT + SAIL). Three different inversion techniques were applied to explore the impact of the employed method on estimation accuracies: numerical optimization (downhill simplex method), a look-up table (LUT) and an artificial neural network (ANN) approach. By numerical optimization (Num Opt), reliable estimates were obtained for LAI and canopy chlorophyll contents (LAI × Cab) with r2 of 0.85 and 0.94 and RDP values of 1.81 and 2.65, respectively. Accuracies dropped for canopy water (LAI × Cw) and dry matter contents (LAI × Cm). Nevertheless, the range of leaf water contents (Cw) was very narrow in the studied plant material. Prediction accuracies generally decreased in the order Num Opt > LUT > ANN. This decrease in accuracy mainly resulted from an increase in offset in the obtained values, as the retrievals from the different approaches were highly correlated. The same decreasing order in accuracy was found for the difference between the measured spectra and those reconstructed from the retrieved variable values. The parallel application of the different inversion techniques to one collective data set was helpful to identify modelling uncertainties, as shortcomings of the retrieval algorithms themselves could be separated from uncertainties in model structure and parameterisation schemes.  相似文献   

18.
We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer’s law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the triangulation approach may be preferred.  相似文献   

19.
Agricultural residues have gained increasing interest as a source of renewable energy. The development of methods and techniques that allow to inventory residual biomass needs to be explored further. In this study, the residual biomass of olive trees was estimated based on parameters derived from using a Terrestrial Laser Scanning System (TLS). To this end, 32 olive trees in 2 orchards in the municipality of Viver, Central Eastern Spain, were selected and measured using a TLS system. The residual biomass of these trees was pruned and weighed. Several algorithms were applied to the TLS data to compute the main parameters of the trees: total height, crown height, crown diameter and crown volume. Regarding the last parameter, 4 methods were tested: the global convex hull volume, the convex hull by slice volume, the section volume, and the volume measured by voxels. In addition, several statistics were computed from the crown points for each tree. Regression models were calculated to predict residual biomass using 3 sets of potential explicative variables: firstly, the height statistics retrieved from 3D cloud data for each crown tree, secondly, the parameters of the trees derived from TLS data and finally, the combination of both sets of variables. Strong relationships between residual biomass and TLS parameters (crown volume parameters) were found (R2 = 0.86, RMSE = 2.78 kg). The pruning biomass prediction fraction was improved by 6%, in terms of R2, when the variance of the crown-point elevations was selected (R2 = 0.92, RMSE = 2.01 kg). The study offers some important insights into the quantification of residual biomass, which is essential information for the production of biofuel.  相似文献   

20.
Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (⩽10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号