首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT Pebbly sediments of the shallow marine Abrioja fan-delta show pockets (bowl-shaped structures, partly filled with pebbles) and pillars (elongate structures, filled with sand and pebbles). These structures are most abundant in pebbly sediments deposited on a steep slope ( ca. 25°-10°) and are absent in conglomerates deposited on a slope of ca . 6° and less, although they are present in the pelitic top of these beds.
The pocket and pillar structures are interpreted as fluid escape structures originating from local liquefaction and fluidization, processes which are favoured by rapid deposition, rapid sediment accumulation, the presence of less permeable layers and an immature sediment texture.
These conditions are met in conglomeratic fan-deltas, which have steep slopes with immature sediments. It is concluded that the presence of fluid escape structures in conglomeratic sediments may indicate a steep depositional slope.  相似文献   

2.
New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.  相似文献   

3.
ABSTRACT Usually well preserved fluidization pillars and sand filled fluidization pipes occur within submarine channel sands of the basal Uratanna Formation (Lower Cambrian) in the Adelaide Geosyncline of South Australia. The morphology of these structures reflects complex lateral and vertical movement of fluids during liquefaction and dewatering. Fluidization pipes acted as conduits for highly concentrated, upward directed fluid flow. The formation and maintenance of these pipes was dependent upon the development of a pipe wall composed of clay plugged fine sand. Formed during initial fluidization, this lining acted as a permeability barrier, confining and concentrating fluidized flow within the pipe. Each of the pipes is surrounded by a cylindrical fluidization halo in which leakage through the pipe lining produced partial fluidization of the surrounding sediment. Fine scale structures within these haloes indicate that fluids flowed radially and upward out of the fluidization pipes at an acute angle. These fluids merged with and influenced the orientation and size of adjacent fluidization pillars. The fluidization pipes of the Uratanna Formation may represent unusual preservation of the unstable fluid flow conditions that occur during incipient fluidization of sand beds.  相似文献   

4.
A dense grid of very-high resolution seismic profiles on Lake Villarrica provides a quasi-3D view on intercalated lenses of low-amplitude reflections, which are connected by acoustic wipe-out patches and fractures to an underlying voluminous mass-wasting deposit. The lenses are interpreted as being created by earthquake-triggered liquefaction in this buried mass-wasting deposit and subsequent sediment fluidization and extrusion at the paleo-lake bottom. These sediment volcanoes are mapped in detail. They have a rather uniform circular geometry and show a linear relationship between apparent width and maximum thickness on a seismic section. The largest sediment volcanoes are up to 80 m wide and 1.9 m thick. Their slope angles designate a syn- to post-depositional sagging of most sediment volcanoes. Sediment volcano detection and mapping from nearby Lake Calafquén further strengthen the revealed geometrical relationships. Locally, some of the sediment/fluid escape structures extend to a higher position in the stratigraphy, which points to a polyphase escape process associated with multiple multi-century spaced strong earthquakes. Thickness and morphology of the source layer seem to exert a dominant control in the production of sediment/fluid extrusions. This study shows that reflection seismic profiling allowed recognizing 4 different seismic events in the studied stratigraphic interval, which are evidenced by mass-wasting deposits and/or fluidization features.  相似文献   

5.
杨剑萍  聂玲玲  杨君 《沉积学报》2008,26(6):967-974
在区域构造背景研究和岩心观察的基础上,在柴达木盆地西南缘新近纪地层中识别出与地震沉积有关的软沉积物变形构造。软沉积物变形构造包括液化砂岩脉、泄水构造、重荷模、火焰构造、震积砂枕、砂球构造、枕状层、层内错断、地裂缝、串珠状构造、震褶层、混合层及地震角砾状构造等。液化砂岩脉有喉道状、脉络状、飘带状、尖突状及“V”字形五种,主要是由振动流体化作用、振动液化挤压作用和振动拉张裂缝充填作用形成的;重荷模、火焰构造、枕状构造、球状构造是受地震颤动在砂、泥岩界面上由于砂层下沉、泥层上穿形成的;地裂缝、层内错断、震褶层是地震颤动直接引起的断裂、错断和褶皱;枕状层是地震振动引起的砂层脱水、下沉、变形形成的;混合层构造的完整性取决于地震强度和地震持续时间;地震角砾状构造是由地震振动使原始沉积层断裂形成的自碎屑角砾、脆性角砾和塑性角砾组成。该成果从沉积学角度证明了新近纪是昆仑山造山带北侧断裂活动较强烈时期,也为柴达木盆地新生代构造演化研究提供了依据。地震作用极大地提高了储层的渗透率,改善了油气储层的储集物性。  相似文献   

6.
华北古陆北缘中元古代串岭沟组是整个华北古陆沉积环境从以滨浅海陆源碎屑岩为主体的沉积体系向以碳酸盐岩为主体的陆表海沉积体系的转折点。串岭沟组发育了大量的软沉积物变形构造:水塑性变形构造,液化构造,流化构造,均是与地震驱动相适配的变形构造,它们赋存于特定的层内,并在空间上呈规律变化,为典型震积岩。地震中心主要为蓟县—兴隆区域,东西向展布的断裂控制相带分布,南北向控制沉积类型。软沉积变形构造可以作为重要沉积标志来限定大陆裂解引发的伸展构造运动时间。因此综合研究串岭沟组发育的软沉积物变形构造类型、特征、层位和空间位置对于认识原型盆地的断裂构造活动特征具有重要意义。  相似文献   

7.
河南省嵩山区五佛山群内的砂岩岩墙及构造解释   总被引:2,自引:0,他引:2  
索书田  闻立峰 《地学前缘》2004,11(2):549-556
河南省嵩山地区中—新元古代五佛山群沉积岩中发育几百条砂岩岩墙、砂岩岩脉和砂岩岩床 ,形成一个壮观的砂岩岩墙群。它们的地质关系、几何学、组成和结构特征显示 ,其母源层是骆驼畔组含砾中粗粒砂岩及中细粒砂岩 ,主要是在五佛山群重力滑动构造发育过程中 ,准稳定的骆驼畔组砂岩经液化及流体化 ,由上向下注入到下伏的葡峪组页岩等岩层内断层、裂隙和节理中形成的。砂岩岩墙群的发育证明 ,五佛山群区域变形时 ,其整个地层序列的岩石虽已具有一定强度 ,可形成较规律性的重力滑动构造几何学和运动学图像 ,但是 ,总体尚未完全固结成岩。因此 ,五佛山群复杂的阿尔卑斯型构造属于软沉积变形 ,在中朝克拉通尺度上 ,乃是地壳局部力学不稳定性的结果  相似文献   

8.
Origin of composite dikes in the Gouldsboro granite, coastal Maine   总被引:3,自引:0,他引:3  
R.A. Wiebe  R. Ulrich 《Lithos》1997,40(2-4):157-178
Composite dikes, consisting of aphyric basaltic margins and phenocryst-rich rhyolitic interiors, cut the Gouldsboro granite of coastal Maine at many localities. Limited hybridization (exchange of crystals, commingling, and mixing) occurs in most of the dikes and indicates that the two magmas were contemporaneous with emplacement of rhyolitic magma following closely in time the initial emplacement of the basaltic dike. Petrographic characteristics and geochemistry indicate that the source of the rhyolite was resident magma in the Gouldsboro granite magma chamber. The composite dikes formed when basaltic dikes ruptured the Gouldsboro magma chamber, permitting partly crystallized magma from the margin of the chamber to flow outward into the center of the basaltic dikes. Field relations of similar composite dikes in other areas (e.g., Iceland, Scotland) are consistent with this model. A second type of composite dike (silicic margins with chilled basaltic pillows) commonly cuts mafic intrusions along the Maine coast and probably formed when a granitic dike ruptured an established chamber of mafic magma, permitting resident mafic magma to collapse downward into the still Liquid granitic dike. Most composite dikes have probably formed when a magma chamber was disrupted by a dike of contrasting magma rather than by tapping a stratified magma chamber.  相似文献   

9.
Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sites in lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptunian dykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitational instabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.  相似文献   

10.
在野外考察过程中,于新疆乌恰地区早侏罗世康苏组沼泽相砂岩层中,发现并识别出软沉积物液化变形层,变形包括负载构造,球枕构造及卷曲变形构造。通过模拟试验的对比研究认为,该软沉积物变形机制与液化作用有关,触发沉积物液化的动力是古地震,并且根据地震震级与液化最大震中距的关系,推测出造成早侏罗世软沉积物变形的里氏地震震级为6相似文献   

11.
Water escape structures in coarse-grained sediments   总被引:10,自引:0,他引:10  
Three processes of water escape characterize the consolidation of silt-, sand-and gravel-sized sediments. Seepage involves the slow upward movement of pore fluids within existing voids or rapid flow within compact and confined sediments. Liquefaction is marked by the sudden breakdown of a metastable, loosely packed grain framework, the grains becoming temporarily suspended in the pore fluid and settling rapidly through the fluid until a grain-supported structure is re-established. Fluidization occurs when the drag exerted by moving pore fluids exceeds the effective weight of the grains; the particles are lifted, the grain framework destroyed, and the sediment strength reduced to nearly zero. Diagenetic sedimentary structures formed in direct response to processes of fluid escape are here termed water escape structures. Four main types of water escape structures form during the fluidization and liquefaction of sands: (1) soft-sediment mixing bodies, (2) soft-sedimsnt intrusions, (3) consolidation laminations, and (4) soft-sediment folds. These structures represent both the direct rearrangement of sediment grains by escaping fluids and the deformation of hydroplastic, liquefied, or fluidized sediment in response to external stresses. Fundamental controls on sediment consolidation are exerted by the bulk sediment properties of grain size, packing, permeability, and strength, which together determine whether consolidation will occur and, if so the course it follows, and by external disturbances which act to trigger liquefaction and fluidization. The liquefaction and fluidization of natural sands usually accompanies the collapse of loosely packed cross-bedded deposits. This collapse is commonly initiated by water forced into the units as underlying beds, especially muds and clays, consolidate. The consolidation of subjacent units is often triggered by the rapid deposition of the sand itself, although earthquakes or other disturbances are probably influential in some instances. Water escape structures most commonly form in fine- to medium-grained sands deposited at high instantaneous and mean sedimentation rates; they are particularly abundant in cross-laminated deposits but rare in units deposited under upper flow regime plane bed conditions. Their development is favoured by upward decreasing permeability within sedimentation units such as normally graded turbidites. They are especially common in sequences made up of alternating fine-(clay and mud) and coarse-grained (sand) units such as deep-sea flysch prodelta, and, to a lesser extent, fluvial point bar, levee, and proximal overbank deposits.  相似文献   

12.
造山后脉岩组合与内生成矿作用   总被引:14,自引:2,他引:12  
造山带大规模花岗质岩浆活动之后往往有一期区域性脉岩产出,被称为岩基后岩墙群。这类脉岩具有近同时形成、宽成分谱系和小体积的特点。根据太行山、燕山、东昆仑山、天山等造山带的观察,这类脉岩可以划分成煌斑岩质、玄武质、闪长质(安山质)、花岗闪长质(英安质)和花岗质(流纹质)等5组。前人大多偏重于研究其中基性部分,因而常常将其与大陆裂解相关基性岩墙群混为一谈。岩石地球化学分析表明,虽然同组脉岩不同样品之间可能存在演化关系,不同脉岩组之间很难相互演化。结合近年来有关岩浆过程速率的研究成果,推测这些脉岩是原生或近原生岩浆固结的产物。这意味着区域地温曲线在不同深度同时穿过所有相应原岩的固相线。基于岩浆起源热体制和区域岩石圈岩石学结构分析,笔者曾经指出,这样的岩浆产生条件要求造山带岩石圈拆沉作用。因此,这类岩墙群的形成是区域构造应力场由挤压向伸展转换阶段的产物,可以用来标定造山过程的结束,因而称其为造山后脉岩组合。进一步对比分析表明,这类脉岩组合分布非常普遍,是地球上业已发现的三类区域性岩墙群之一。尽管如此,基于热传递速率的分析,造山后脉岩组合的形成还应当伴随大规模流体活动。由于深部流体中成矿元素的浓度强烈依赖于压力,新的岩石成因模型意味着造山后脉岩组合与成矿作用相伴生。野外检验表明,可以基于露头观察识别成矿流体的通道和成矿元素大规模堆积的场所。因此,造山后脉岩组合不仅可以用来标定区域造山过程结束的时间,也是区域找矿预测的有效标志。  相似文献   

13.
Soft-sediment deformation structures from the Alcântara Formation (late Albian to Cenomanian), São Luís Basin, northern Brazil, consist of (1) contorted structures, which include convolute folds, ball-and-pillow structures, concave-up paths with consolidation lamination, recumbently folded cross-stratification and irregular convolute stratification that grades into massive beds; (2) intruded structures, which include pillars, dykes, cusps and subsidence lobes; and (3) brittle structures, represented by fractures and faults displaying planes with a delicate, ragged morphology and sharp peaks. These structures result from a complex combination of processes, mostly including reverse density gradients, fluidization and liquefaction. Reverse density gradients, promoted by differential liquefaction associated with different degrees of sediment compaction, led to the genesis of convolute folds. More intense deformation promoted the development of ball-and-pillow structures, subsidence lobes and sand rolls, which are attributed to denser, and thus more compacted (less liquefied), portions that sank down into less dense, more liquefied sediments. Irregular convolute stratification that grades into massive beds would have formed at periods of maximum deformation. The subsidence of beds was accompanied by lateral current drag and fluid escape from water-saturated sands. In addition, the fractures and faults record brittle deformation penecontemporaneous with sediment deposition. All these mechanisms were triggered by a seismic agent, as suggested by a combination of criteria, including (1) the position of the study area at the edge of a major strike-slip fault zone that was reactivated several times from the Albian to the Holocene; (2) a relative increase in the degree of deformation in sites located closer to the fault zone; (3) continuity of the deformed beds over large distances (several kilometres); (4) restriction of soft-sediment deformation structures to single stratigraphic intervals bounded by entirely undeformed strata; (5) recurrence through time; and (6) similarities to many other earthquake-induced deformational structures.  相似文献   

14.
Five mafic dike swarms between 30° and 33°45′S were studied for their geochemical signature and kinematics of magma flow directions by means of AMS data. In the Coastal Range of central Chile (33°−33°45′S), Middle Jurassic dike swarms (Concón and Cartagena dike swarms, CMDS and CrMDS, respectively) and an Early Cretaceous dike swarm (El Tabo Dike Swarm, ETDS) display the presence of dikes of geochemically enriched (high-Ti) and depleted (low-Ti) basaltic composition. These dikes show geochemical patterns that are different from the composition of mafic enclaves of the Middle Jurassic Papudo-Quintero Complex, and this suggests that the dikes were injected from reservoirs not related to the plutonic complex. The mantle source appears to be a depleted mantle for Jurassic dikes and a heterogeneous-enriched lithospheric mantle for Cretaceous dikes. In the ETDS, vertical and gently plunging magma flow vectors were estimated for enriched and depleted dikes, respectively, which suggest, together with variations in dike thickness, that reservoirs were located at different depths for each dike family. In the Elqui Dike Swarm (EDS) and Limarí Mafic Dike Swarm (LMDS), geochemical patterns are similar to those of the mafic enclaves of the Middle Jurassic plutons. In the LMDS, east to west magma flow vectors are coherent with injection from neighbouring pluton located to the east. In the EDS, some dikes show geochemical and magma flow patterns supporting the same hypothesis. Accordingly, dikes do not necessarily come from deep reservoir; they may propagate in the upper crust from coeval shallow pluton chamber. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The dike and volcanic complexes in the upper parts of the ophiolitic sections in the Paleozoides of the South Urals and Mugodzhary are Ordovician and Devonian in age. Two types of Ordovician complexes are distinguished by petrology and geochemistry. One of these types is characterized by a suprasubduction forearc formation setting and the second type developed in spreading basins in close proximity to island arcs. The Ordovician dikes formed in the setting of suprasubduction forearc spreading occur as blocks in the melange of the Sakmara Zone. Zircons from the plagiogranite associated with the dikes are dated at 456 ± 4 Ma. The Polyakovka dike complex in the north of the Cis-Sakmara-Voznesenka Zone is associated with basalts and cherts containing Ordovician conodonts. The dikes were probably formed during subduction of the spreading center; contributions of mantle-plume and subduction-related components are noted. Dike and volcanic complexes of Early-Middle Devonian age determined using isotopic and biostratigraphic methods are widespread. Two groups of complexes are distinguished by structural and geochemical features. The first group was formed in the setting of dispersed spreading in the second half of the Early Devonian. Boninites occur among the rocks of this group. The second group was formed in the setting of fast focused backarc spreading that developed up to the late Eifelian. Dike-in-dike suites close to the first group in composition cut through the Early Eifelian island-arc complexes in the frontal part of the arc. Zircons from the granitoid veins accompanying these dolerite dikes are dated at 391.9 ± 3 Ma (late Eifelian).  相似文献   

16.
This study proposes a new approach for determining the optimum dimensions of a protective spur dike to mitigate the amount of scour around existing spur dikes. Several parameters of a protective spur dike were studied to determine their optimum values, including length, angle, and distance. Also the effect of changes of flow intensity and sediment size were examined. The main objective of this article was to predict the optimum values of protective spur dikes to attain the best performance. To predict the parameters of protective spur dikes for controlling the scour around spur dikes, we used the adaptive neuro-fuzzy inference system method to construct a process that simulates the optimal parameters of a protective spur dike, including the actual length of the protective spur dike, the actual length of the main spur dikes, the distance between the protective spur dike and the first spur dike, the angle between the protective spur dike and the direction of flow, the intensity of the flow, and median size of the bed sediments. This intelligent estimator was implemented using MATLAB/Simulink, and the performances were investigated. The simulation results presented in this paper show the effectiveness of the developed method.  相似文献   

17.
Soft-sediment deformation structures are recognized as important diagnostic features in the rock record for determination of depositional environments and slope processes. The diagnostic value of these structures is reevaluated by analysis of the parameters controlling sediment deformation. Soft-sediment deformation is contemporaneous with deposition and occurs dominantly in course silt to fine sand. The high depositional rate, low permeability and low shear strength of grains within this sediment range maximize the occurrence of deformation. The dominant mechanisms responsible for sediment deformation include: (1) liquefaction or fluidization; (2) reverse density gradation; (3) slumping or slope failure; and (4) shear stress. In most cases a combination of these mechanisms occurs. The processes function in a continuum, producing features that are microscopic to megascopic in scale. It is shown that the processes, and thus the structures, are not environment specific. The true diagnostic value of the structures may be in defining hydrodynamic conditions, and in interpreting paleocurrents and paleoclimatic and paleoseismic events. Ultimately, for the best diagnostic results, soft-sediment deformation structures should be studied in association with all other available lithologic, structural and paleontological information.  相似文献   

18.
蒋幸福  彭松柏  韩庆森 《地球科学》2021,46(6):2117-2132
首次报道了扬子克拉通黄陵背斜南部由辉绿岩脉、花岗闪长岩脉和正长花岗岩脉组成的新元古代早期小型岩墙.辉绿岩脉和花岗闪长岩脉的锆石U-Pb定年结果分别为856±6.4 Ma和860±6.0 Ma.全岩主量和微量元素数据显示岩墙中辉绿岩具有高Pb含量,且Ba/Nb和La/Nb比值变化较大,而花岗闪长岩脉和正长花岗岩脉样品的Y和Nb含量较低,结合继承性锆石年龄分布特征,暗示岩墙形成过程中遭受了不同程度的年轻岛弧地壳物质混染.黄陵南部~860 Ma小型岩墙的发现,表明扬子克拉通在早于该时期已进入后碰撞的伸展构造环境.综合区域已有资料,认为扬子克拉通前寒武纪基底的裂解在时空上均表现出较大差异.   相似文献   

19.
The Antarctic Peninsula has been part of a magmatic arc since at least Jurassic times. The South Shetland Islands archipelago forms part of this arc, but it was separated from the Peninsula following the Pliocene opening of the Bransfield Strait. Dikes are widespread throughout the archipelago and are particularly accessible on the Hurd Peninsula of Livingston Island. The host rocks for the dikes are represented by the Miers Bluff Formation, which forms the overturned limb of a large-scale fold oriented 63/23 NW. The orientation of minor structures indicates a fold axis oriented NNE–SSW (24/0). Structural analysis of the dikes and their host rocks shows that the tectonic regime was similar to other parts of the archipelago and that only minor changes of the stress field occurred during dike emplacement.Based on crosscutting field relationships and geochemical data, six early Paleocene to late Eocene intrusive events can be distinguished on Hurd Peninsula. In contrast to calc-alkaline dikes from other parts of the South Shetland Islands, the majority of the Hurd Peninsula dikes are of tholeiitic affinity. Nd and Pb isotope data indicate a significant crustal component, particularly during initial magmatic activity.Plagioclase 40Ar/39Ar and whole rock K–Ar ages show that dike emplacement peaked during the Lutetian (48.3 ± 1.5, 47.4 ± 2.1, 44.5 ± 1.8 and 43.3 ± 1.7 Ma) on Hurd Peninsula and also further northeast on King George Island. Dike intrusion continued on Livingston Island at least until the Priabonian (37.2 ± 0.9 Ma). The type of magma sources (mantle, slab, crust and sediment) did not change, though their relative magmatic contributions varied with time.During Cretaceous and Early Paleogene times, the Antarctic Peninsula including the South Shetland Islands was situated southwest of Patagonia; final separation from South America occurred not before the Eocene. Thus, the geological evolution of Livingston Island is related as much to the development of Patagonia as of Antarctica, and needs to be considered within the history of southernmost South America.  相似文献   

20.
In the Cuthbert Lake region of north-central Manitoba, northeasterly trending ultramafic-mafic dikes, part of the Molson dike swarm, show a range of composition from gabbro to olivine-hornblende pyroxenite to hornblende peridotite. The major dike which is ultramafic in composition is 60 m thick. Olivine and chromian spinel were the earliest cumulus phases formed in a subcrustal magma chamber before the emplacement of the dikes. Orthopyroxene and clinopyroxene were formed following emplacement at about 1120° C. Plagioclase and hornblende were the latest phases to crystallize from the intercumulus melt. Mineralogical and chemical variations across the major dike are interpreted to have resulted from flow differentiation of multiple injections of magma carrying suspended olivine crystals. Olivine phenocrysts changed their compositions from about Fo87 to values ranging from Fo80to Fo73 as a function of the amount of intercumulus melt. The composition of this melt is estimated to have been basaltic. A mafic dike, about 10 m thick and occurring about 20 m away from the main ultramafic dike, is believed to have been formed from magmas that were tapped from an upper layer overlying the olivine-rich zone in a subcrustal magma chamber. Separation must have occurred when clinopyroxene and plagioclase appeared on the liquidus.Geological Survey of Canada Contribution 36486  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号