首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
Stratigraphic changes in diatom assemblages from four small lakes on northeastern Ellesmere Island, high Arctic, Canada, provide a proxy lake-ice cover and paleoenvironmental record. Low absolute diatom abundances and a benthic Fragilaria (sensu lata) dominated assemblage during the postglacial (< 7.6 ka B.P.) to mid-Holocene record the moderating effects of locally retreating glaciers. Around 5.5 ka B.P. diatom concentrations begin to rise, reaching their highest levels (109 valves per g dry sediment) between 4.2 and 3 ka B.P., interpreted to be the warmest period in this region. Topoclimatic differences between lakes on Hazen Plateau and those lower in Lake Hazen Basin account for the initial decline in diatom abundances in the upper lakes after 3 ka B.P. This change is thought to reflect a lowering of the regional snowline, accordant with widely recognized Neoglacial advances on Ellesmere Island and Greenland. Lakes in lower Lake Hazen Basin maintained extensive summer ice free conditions until ~ 1.9 ka B.P., after which diatom abundances declined, suggesting prolonged summer lake-ice cover through the remainder of the recovered Holocene record. Differences between the records presented here and those from coastal areas of the Canadian high Arctic highlight the unique topoclimatic characteristics and continentality of the Lake Hazen region, and possible effects that local marine environments may have had on coastal records. Such differences serve to demonstrate the inherent geographic variability of paleoenvironmental records from the high Arctic.  相似文献   

2.
To investigate the fate of ice algae released from sea ice, we investigated the abundance, species composition, and sinking flux of diatoms in the water column under fast ice near Syowa Station, Antarctica during the summer of 2005/2006. The diatom assemblage in the water column consisted of chain-forming planktonic species, in contrast to the under-ice assemblage dominated by pennate species reported from this site in the past; this dissimilarity suggests the presence of an unconsolidated platelet ice layer under the congelation ice, within which planktonic species can bloom. Among the dominant diatoms, Porosira pseudodenticulata and Pseudo-nitzschia cf. turgiduloides were dominant in the water column, and their water column stocks were higher than their mass sedimentation. These species apparently maintain their populations in the surface layer, as their production remains in the water column. In contrast, Fragilariopsis kerguelensis and Thalassiosira australis were scarce in the water column but rich in the flux, indicating active sinking and export of their production to the benthic ecosystem. This distinction in buoyancy control and sinking characteristics of the dominant diatoms on release from the fast ice influences the diatom species composition and carbon flow under the ice.  相似文献   

3.
A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).  相似文献   

4.
Tanzhuo Liu   《Geomorphology》2003,53(3-4):209-234
Rock varnish is a manganiferous dark coating ubiquitous in desert landscapes. To test the validity of varnish microstratigraphy as a chronometric indicator, varnish samples were collected from radiometrically dated and undated late Quaternary lava flows in Amboy, Cima, and Pisgah volcanic fields (AVF, CVF, PVF) in the Mojave Desert of California, western United States. Varnish microstratigraphies show a replicable layering sequence that appears to record regional climate changes that likely correspond in time to the Younger Dryas and Heinrich events in the North Atlantic region. Microstratigraphic patterns on these volcanic fields match patterns found in varnishes from other western US sites with available radiometric age constraints. Based on this regional chronology, varnishes from the A flow, H flow, and a stone pavement surface in the Cima volcanic field were estimated to be 16.5–24, 74–85, and 74–85 ka, respectively; these ages are consistent with previously published cosmogenic 3He ages of 18–20, 72–74, and 80–85 ka for these geomorphic surfaces. Varnishes from the I flow at Cima yielded a puzzling age estimate of 39 ka, which is consistent with an older 3He age of 37±6 ka reported for the I flow, but inconsistent with a younger 3He age of 31±7 ka and a cosmogenic 36Cl age of 27±1.3 ka for the same flow. Reinterpretation of the original varnish age data, with knowledge of then available field mapping results of the I flow, suggests that the I cone is polycyclic and different flow units were probably unintentionally sampled in the field. The revised varnish ages of 30 and 39 ka for the I flow thus may be in good agreement with their corresponding 3He and 36Cl ages. In a blind test of the method, varnishes from the Phase 1 flow at Pisgah, an unnamed flow (called here the I′ flow) at Cima, and the Amboy flow were estimated to be 24–30, 46–60, and 74–85 ka, respectively; these ages agree well with 36Cl ages of 22.5±1.3, 46±2, and 79±5 ka reported for the same flows by Phillips [Geomorphology (2002).]. These test results provide convincing evidence that varnish microstratigraphy, once radiometrically calibrated, can be used as a valid dating tool to estimate surface exposure ages of desert landforms in the western US drylands.  相似文献   

5.
Data derived from monthly sediment traps in Sihailongwan, a maar lake in northeastern China, yielded a detailed record of seasonal sediment fluxes. Sediment fluxes correspond to seasonal climatic variations. The diatom flux shows two distinct peaks in September and November, whereas the flux of chrysophyte stomatocysts shows a maximum in May. The blooms of diatoms may be related to the subsequent deepening of the thermocline in September and lake overturn in spring and November, and influx of nutrient-rich groundwater sometime after the onset of the summer monsoon. The fluxes of organic matter and siliciclastics show a distinct seasonal pattern. They are varying between 0.03 and 0.56 g m−2 d−1 and reach a maximum in May. Quartz in the trap samples indicates that the siliciclastic matter may originate from distant aeolian sources. Sediment trap data and thin section investigations confirm the seasonality of Lake Sihailongwan sediments. Dark-colored layer, which mainly consists of valves of Cyclotella comta, might be deposited during autumn, and then is followed by a light-colored mixed layer starting with siliciclastics deposited after ice-out. The varved sediments in the U-shaped Lake Sihailongwan represent a sensitive siliciclastic and geochemical archive of paleoenvironmental variability in this data-sparse area. Detailed investigations of varved sediments should provide decadal to annual records of seasonal sediment flux and its relation to climatic parameters. Especially the diatomaceous layer is regarded to indicate summer climatic fluctuations, while the thick siliciclastic layer could be an indictor of dust events.  相似文献   

6.
Diatom-based transfer functions for inferring epilimnetic total phosphorus (TP) have been developed from a data set of 33 southeastern Australian water storages. Regular institutional monitoring of these sites has allowed comparison of models developed from TP data covering different time periods. A model based on mean annual TP performs better than models derived from winter maximum TP, spring minimum TP or TP nearest the time of diatom sampling. A mean annual TP model (WA-PLS 2 component) has a jack-knifed diatom-inferred versus measured TP correlation coefficient (r 2 jack) of 0.69 and a root-mean-square-error of prediction (RMSEP) of 0.246 log10g TP l–1, while alternative models have RMSEP > 0.27. Deletion of two samples with uncharacteristic species composition and environmental conditions improved performance of the mean annual TP model (r 2 jack= 0.74; RMSEP = 0.233 log10g TP l–1). Comparison with other published diatom-TP calibration models indicates that this model performs relatively well, with possible contributing factors including the extensive characterisation of TP (with an average 15 determinations making up the annual mean) and the dominance of planktonic diatoms in most sites. Downcore application of the model will allow the reconstruction of reservoir nutrient histories since commissioning, and thus provide a basis for understanding and management of reservoirs.  相似文献   

7.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

8.
We examined algal remains and fossil pigments in 210Pb-dated sediment cores from Lake Biwa to explore historical changes in the phytoplankton community of the lake over the past 100 years and to identify environmental factors that caused those changes. Fluxes of fossil pigments and algal remains were very low before the 1960s, but increased through the 1960s and 1970s, indicating that the lake had eutrophied in the 20 years since 1960. After 1980, however, fluxes of all fossil pigments and algal remains decreased or stabilized. Redundancy analysis with meteorological and limnological variables explained more than 70% of the variation of these fluxes and showed that the decrease in fluxes of most algal taxa that occurred in the 1980s was related to changes in meteorological variables such as wind velocity, rather than changes in the lake’s trophic state. Sedimentary records of algal remains also revealed that Aulacoseira nipponica, an endemic diatom species that grows in winter, decreased dramatically after 1980, while Fragilaria crotonensis, a cosmopolitan spring diatom species, became dominant. Replacement of one dominant diatom species by another could not be explained simply by changes in the lake trophic state, but was reasonably strongly related with an increase in winter water temperature. These results suggest that the phytoplankton community in Lake Biwa was influenced by changes in local environmental conditions (nutrient loading) through the 1960s and 1970s, but more so by regional (meteorological) and global (climate warming) factors since 1980.  相似文献   

9.
Sediment traps placed in the profundal region of Elk Lake, north central Minnesota during the 1979 spring and 1983–84 fall and spring seasons monitored seasonal diatom production for two climatically distinctive periods. The spring of 1979 was one of the coldest and wettest on record. Ice out at Elk Lake was 10 days later than average, and spring circulation was short. Fragilaria crotonensis dominated the late spring and early summer diatom production in association with Synedra and Cyclotella species, perhaps because rates of phosphorus supply were low compared to silica. The winter of 1983–84 was drier than usual, and the early but cold spring of 1984 caused ice out at Elk Lake to be about 1 week earlier than normal. Spring storms promoted a long and full circulation that allowed Stephanodiscus minulutus to bloom, presumably in response to increased phosphorus loading related to deep and vigorous circulation. The two dominant diatoms in Elk Lake, F. crotonensis and S. minutulus may reflect climatic patterns that control lake circulation. The climatically regulated occurrence of these diatoms is generally, but not specifically, comparable to their distribution in lake surface sediments throughout Minnesota. A combination of regional and lake-specific studies on the controls of diatom succession and distribution provides climatic insights for interpreting paleolimnogical records of diatoms.  相似文献   

10.
We investigated the morphological features, vertical sinking fluxes, and number densities of the resting cells of ice-associated microorganisms in the 20–100 μm fraction of natural marine sediments collected from ice-covered and ice-free areas around Syowa Station, Lützow-Holm Bay, East Antarctica. We identified the resting cells of various taxonomic groups, including the spores of a diatom, cysts of three dinoflagellates, cysts of five oligotrich ciliates, and the eggs of a mesozooplankton. This is the first report of oligotrich ciliate cysts from Antarctic waters. The resting spores of Thalassiosira australis (diatom), cysts of Polarella glacialis (dinoflagellate), and egg type 1 sink to the bottom sediment during summer. Our results suggest that some planktonic and ice-associated microorganisms in Antarctic coastal areas send their resting cells to the bottom sediments as seed populations for the following generation.  相似文献   

11.
A diatom study of lacustrine sediments in the southern part of the Bolivian Altiplano (Salar of Coipasa) provides a continuous record of the period 21,000–17,500 14C yr BP. Constrained by seven AMS 14C dates, this record provides evidence that the Coipasa basin was filled by a shallow body of water during this time. Diatom/salinity and diatom/ionic composition transfer functions indicate that the lake was saline, dominated by sodium-chloride throughout all the period.A comparison with regional data shows that Lake Titicaca could not have overflowed towards the southern Bolivian Altiplano at that time. As this dry phase was not registered in Lake Coipasa, this lake was probably supplied by winter precipitation originating from the Pacific. But, recent data from the deep basin of Lake Titicaca show that the lake-level was higher during this time interval, and the question arises whether precipitation from Atlantic and Amazonia sources could have played an important role on the Altiplano during the Last Glacial Maximum (LGM). This hypothesis needs to match other available paleoclimatic data from the lowlands of tropical South America, where there is evidence that during the LGM, conditions were drier than today. Global climate simulations suggest a positive P-E on the Altiplano, due to a strong cooling, reducing evaporative demand more than any increase in precipitations. An increase of winter precipitation from the Pacific is in agreement with data from the Chilean coast showing a northward locations of the Westerlies during the LGM. This paleoclimatic hypothesis is also in agreement with a coupled ocean-atmosphere model, which indicates weaker summer precipitation and stronger winter precipitation in the tropical areas.  相似文献   

12.
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.  相似文献   

13.
Upper Klamath Lake, in south-central Oregon, contains long sediment records with well-preserved diatoms and lithological variations that reflect climate-induced limnological changes. These sediment archives complement and extend high resolution terrestrial records along a north–south transect that includes areas influenced by the Aleutian Low and Subtropical High, which control both marine and continental climates in the western United States. The longest and oldest core collected in this study came from the southwest margin of the lake at Caledonia Marsh, and was dated by radiocarbon and tephrochronology to an age of about 45 ka. Paleolimnological interpretations of this core, based upon geochemical and diatom analyses, have been augmented by data from a short core collected from open water environments at nearby Howards Bay and from a 9-m core extending to 15 ka raised from the center of the northwestern part of Upper Klamath Lake. Pre- and full-glacial intervals of the Caledonia Marsh core are characterized and dominated by lithic detrital material. Planktic diatom taxa characteristic of cold-water habitats (Aulacoseira subarctica and A. islandica) alternate with warm-water planktic diatoms (A. ambigua) between 45 and 23 ka, documenting climate changes at millennial scales during oxygen isotope stage (OIS) 3. The full-glacial interval contains mostly cold-water planktic, benthic, and reworked Pliocene lacustrine diatoms (from the surrounding Yonna Formation) that document shallow water conditions in a cold, windy environment. After 15 ka, diatom productivity increased. Organic carbon and biogenic silica became significant sediment components and diatoms that live in the lake today, indicative of warm, eutrophic water, became prominent. Lake levels fell during the mid-Holocene and marsh environments extended over the core site. This interval is characterized by high levels of organic carbon from emergent aquatic vegetation (Scirpus) and by the Mazama ash (7.55 ka), generated by the eruption that created nearby Crater Lake. For a brief time the ash increased the salinity of Upper Klamath Lake. High concentrations of molybdenum, arsenic, and vanadium indicate that Caledonia Marsh was anoxic from about 7 to 5 ka. After the mid-Holocene, shallow, but open-water environments returned to the core site. The sediments became dominated (>80%) by biogenic silica. The open-water cores show analogous but less extreme limnological and climatic changes more typical of mid-lake environments. Millennial-scale lake and climate changes during OIS 3 at Upper Klamath Lake contrast with a similar record of variation at Owens Lake, about 750 km south. When Upper Klamath Lake experienced cold-climate episodes during OIS 3, Owens Lake had warm but wet episodes; the reverse occurred during warmer intervals at Upper Klamath Lake. Such climatic alternations apparently reflect the variable position and strength of the Aleutian Low during the mid-Wisconsin.  相似文献   

14.
Two distinct episodes of increased water flux imposed on the Great Lakes system by discharge from upstream proglacial lakes during the period from about 11.5 to 8 ka resulted in expanded outflows, raised lake levels and associated climate changes. The interpretation of these major hydrological and climatic effects, previously unrecognized, is mainly based on the evidence of former shorelines, radiocarbon-dated shallow-water sediment sequences, paleohydraulic estimates of discharge, and pollen diagrams of vegetation change within the basins of the present Lakes Superior, Michigan, Huron, Erie and Nipissing. The concept of inflow from glacial Lake Agassiz adjacent to the retreating Laurentide Ice Sheet about 11–10 and 9.5–8.5 ka is generally supported, with inflow possibly augmented during the second period by backflooding of discharge from glacial Lake Barlow-Ojibway.Although greater dating control is needed, six distinct phases can be recognized which characterize the hydrological history of the Upper Great Lakes from about 12 to 5 ka; 1) an early ice-dammed Kirkfield phase until 11.0 ka which drained directly to Ontario basin; 2) an ice-dammed Main Algonquin phase (11.0–10.5 ka) of relatively colder surface temperature with an associated climate reversal caused by greater water flux from glacial Lake Agassiz; 3) a short Post Algonquin phase (about 10.5–10.1 ka) encompassing ice retreat and drawdown of Lake Algonquin; 4) an Ottawa-Marquette low phase (about 10.1–9.6 ka) characterized by drainage via the then isostatically depressed Mattawa-Ottawa Valley and by reduction in Agassiz inflow by the Marquette glacial advance in Superior basin; 5) a Mattawa phase of high and variable levels (about 9.6–8.3 ka) which induced a second climatic cooling in the Upper Great Lakes area. Lakes of the Mattawa phase were supported by large inflows from both Lakes Agassiz and Barlow-Ojibway and were controlled by hydraulic resistance at a common outlet — the Rankin Constriction in Ottawa Valley — with an estimated base-flow discharge in the order of 200000 m3s–1. 6) Lakes of the Nipissing phase (about 8.3–4.7 ka) existed below the base elevation of the previous Lake Mattawa, were nourished by local precipitation and runoff only, and drained by the classic North Bay outlet to Ottawa Valley.Geological Survey of Canada Contribution 42488.This is the twelfth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

15.
刘向军 《盐湖研究》2018,26(2):16-26
青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11~8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度的波动。全新世气候适宜期出现在8~6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。  相似文献   

16.
The ecosystem response of Lake Redó (Central Pyrenees) to fluctuations in seasonal air temperature during the last two centuries was investigated by comparison of reconstructed air temperatures with the sediment record. Fine slicing allowed a resolution of 3–6 years according to the 210Pb dating, although it was still difficult to easily investigate the response to air temperature forcing, since extreme fluctuations in temperature occur on interannual time-scales. However, the resolution was sufficient to show responses on decadal and century scales. An overall tendency to warming in mean annual temperature in the Central Pyrenees has been caused by summer and in particular by autumn increases. Many of the measured sediment variables apparently responded to these long term trends, but the significance of the relationships was highly conditioned by the structure of the data. The variables responding most on the finer time scales were the microfossils. For diatoms, chironomids and chrysophytes the main variability correlated to summer and to autumn temperatures. For two planktonic species, Fragilaria nanana and Cyclotella pseudostelligera, we found a link of their variability with temperature fluctuations in their growing months (September and October, respectively). This relationship appeared at a certain point during a general warming trend, indicating a threshold in the response. On the other hand, no significant changes in the dominant species could be linked to temperature, nor in any significant subgroup of the 180 diatom species present in the core. In contrast, for most chironomids (particularly Paratanytarsus austriacus, Heterotrissocladius marcidus and Micropsectra radialis) a negative relationship with summer temperature extended throughout the studied period. This response of the whole group gives chironomids a more robust role as indicators for recording temperature changes on long time-scales (e.g., through the Holocene) and for lake signal inter-comparison. Finally, our results indicated that, in all cases, there was a significant resilience to high frequency changes and hysteresis despite extreme fluctuations. Although we were dealing with organisms with one or many generations per year, their populations seemed to follow the decadal trends in air temperature.  相似文献   

17.
Pollen and sediment from Grass Lake, California provide a history of vegetation and climate in the southern Cascade Range from 36 to 19 cal ka, revealing climate changes that led to the glacial advances recorded at Upper Klamath Lake (Rosenbaum and Reynolds 2004a – this issue). Variations in the percentages of conifer and Artemisia (sagebrush) pollen at Grass Lake recorded shifts in vegetation that reflect changes in precipitation. Between 36 and 34 cal ka, a progression from steppe to open pine forest to dense pine forest indicates that precipitation increased. After 32 cal ka, the forest became more open and by 30 cal ka sagebrush steppe surrounded the lake, implying that precipitation decreased. The area was arid for most of the interval between 30 and 19 cal ka. Increases in conifer pollen recorded increases in precipitation from 21 through 19 cal ka, when open pine forest colonized the lake area. Throughout the period from 36 to 19 cal ka, centennial- to millennial-scale intervals with increased conifer pollen imply that the arid interval was interrupted by periods of increased precipitation. Pollen data also provide evidence that the major fluctuations in sand concentration in the Grass Lake core reflect temperature shifts. Changes in sediment particle size are closely related to variations in pollen concentration and accumulation rate, which in turn reflect changes in plant cover, implying that sand was deposited in the lake due to deflation of clay- and silt-sized particles from sparsely-vegetated alpine areas of the watershed. Sand deposition increased as climatic cooling led to reductions in the elevation of upper treeline and alpine conditions affected a larger part of the watershed. There is no evidence of glaciation in the basin, but pollen data show the area was above upper treeline during Cold Period III (34–32 cal ka), one of several very cold intervals. Vegetation decreased at about 28 cal ka and remained sparse for at least 9000 years, implying that the climate became cooler and remained cool until after 19 cal ka. Cold Period II developed at about 25 cal ka and terminated by 23 cal ka. The Grass Lake watershed was again above upper treeline with the onset of Cold Period I, soon after 19 cal ka. Comparison of the Grass Lake record with those from Upper Klamath Lake, Oregon and Tulelake, California suggests a persistent pattern of environmental changes in this time interval throughout the Modoc Plateau region.  相似文献   

18.
We use a multi-proxy (n = 11) paleolimnological approach on deep-water sediment from eastern Lake Ontario to characterize both long- and short-term regional climate change over the past ~10,000 calendar years. Proxies included % total organic matter, % total carbonate, magnetic susceptibility, C/N ratios, % organic carbon, % total nitrogen, % biogenic silica and 18O and 13C of carbonate, as well as 13C and 15N of bulk organic matter. There is a marked shift in most proxies at ~9.4 ka which defines the start of Holocene warmth in this region. Prior to this, the area was influenced by the post-Younger Dryas cold/wet interval, controlled by a southward displacement of the polar front jet stream, when many proxies were at their minimum. The Hypsithermal interval (~9.4–5.3 ka) was the warmest and wettest of the Holocene due to a long-term increase in summer insolation. The Hypsithermal, however, was interrupted by two cold climates; the 8.2 ka event (~8.4–8.0 ka) and the Nipissing Rise (~6.8–5.0 ka), both of which are linked to a reduction in thermohaline circulation and northward oceanic heat transport. The Neoglacial interval (~5.3 ka to ~1850 AD), driven by a long-term decrease in summer insolation, was cooler and dryer, but more stable, than the Hypsithermal. The short Historic interval (post ~1850 AD) was characterized by some of the largest amplitude and most abrupt anomalies of the past 10,000 years, due to intense anthropogenic activity, when a number of proxies reached unprecedented values.  相似文献   

19.
There is increasing interest in the 18O/16O ratio of diatom silica, particularly for lakes where carbonates are absent. Here we compare the 18O/16O ratios preserved in diatom silica and authigenic calcite from an open, spring-fed, freshwater lake core from Turkey which spans marine oxygen isotope stage 3. The two sets of isotope data show contrasting trends in spite of their mutual dependence on the water 18O/16O ratio and lake-water temperature. The most likely explanation for this divergence is difference in seasonality of biological productivity mediated by the strongly continental climate of the Anatolian plateau. Diatom silica and authigenic calcite are precipitated from solutes in the lake-water at different times of the year. Diatom productivity follows a well-defined seasonal cycle, peaking first and most importantly in the spring and then in the autumn. The precipitation of calcite follows productivity by all forms of photosynthetic organisms that deplete CO2 but in most lakes this occurs during the summer months. The 18Ocalcite curve shows mean summer temperature maxima at ca. 30–35 and ca. 58 ka BP while the intervening data represent a period of relatively cool summers. The 18Odiatom curve shows bipolar results (15–20 and 29–33), which suggests that at least two discrete sources or processes contributed to the oxygen composition of the diatoms but probably involved a dilution mechanism to shift the isotopic values. The most likely source of depleted water is from snow entering the lake during the spring thaw. We infer that many authigenic calcite curves from regions with markedly seasonal climates may be temporally limited to a few summer months and that diatom silica provides complementary data on seasonally-specific water isotopic composition rather than a substitute for analyses based on carbonate.  相似文献   

20.
Spatial variability of sediment and diatom deposition was assessed in a small monomictic, eutrophic lake in Northern Ireland (Lough Augher, Co. Tyrone) using measurements from 17 sediment cores. Loss-onignition profiles in water depths >6 m showed good repeatability, while littoral cores were more variable with localised profiles. Dry mass accumulation rates, derived by biostratigraphic correlation to a 210Pb dated master core, were variable and not correlated with water depth. Basin mean dry mass accumulation rate was 0.068 g cm-2 yr-1 (range 0.036–0.09) prior to 1900, and 0.19 g cm-2 yr-1 (range 0.11–0.3) after 1974. Post-1940 cumulative fluxes were estimated for dry mass (range 3.49–916 g cm-2) and diatoms (range 16.9–113.8×107 frustules cm-2). Cumulative dry mass was inversely correlated (r=–0.64) with distance from the inflow, indicating its localised influence. No variable was correlated with water depth except frustules of planktonic diatoms (r=0.66). However, high cumulative fluxes of diatoms and dry mass away from the inflow suggest that the expansion of the littoral macrophyte community may be responsible for decreased resuspension in shallow water, and together with increased sediment trapping, has enhanced sediment accumulation in shallow water over recent time periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号