首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatom analysis of a varved sediment core from Elk Lake, Minnesotadocuments important natural and human-caused shifts in primary productivity atdecadal scales for the past 1500 years. Interpretations from a perspective ofplanktic diatom seasonal dynamics and from total phosphorus inferences based ona 111-lake training set of freshwater Canadian lakes reveal a major change tomore productive environments after 1000 years ago probably caused by earlierice-out and stronger, longer periods of lake circulation during the spring.European impacts in the region, principally logging in the Elk Lake drainage,during the past 100 years increased nutrient fluxes and turbulence during theopen water season to promote blooms of Aulacoseiraambigua. High resolution (semi-decadal) diatom analyses suggestsunspot cycle periodicities that may reflect short-term changes in thecharacter of irradiance and (or) sun-climate interactions. Total epilimneticphosphorus inferences from the Canadian training set applied to the Elk Lakediatom record document both long-term and short-term variations inproductivity and reconstruct past phosphorus values consistent with somepresent-day measured values at Elk Lake. The Elk Lake study underscores theneed for neolimnological monitoring of both training set and target lakes aswell as for the application of a multiple proxy protocol to documentpaleo-productivity that approaches neolimnological resolution.  相似文献   

2.
Diatom species counts were conducted on 171 sediment samples from the 13-m-long core PG1351 from Lake El’gygytgyn, northeast Siberia. The planktonic Cyclotella ocellata-complex dominates the diatom assemblage through most of the core record, persisting through a variety of climate conditions. Periphytic diatoms, although less abundant, have greater diversity and greater down-core assemblage variation. During warm climate modes, longer summer ice-free conditions may have allowed more complex diatom communities to develop in shallow-water habitats, and enhanced circulation may have increased transport of these diatoms to deeper parts of the lake. Zones of low overall diatom abundance further support inferred intervals of low lake productivity during times of extended lake ice and snow cover. More data on the modern spatial and temporal distribution of diatom species in the Lake El’gygytgyn system will improve inferences from core records. This is the last in a series of eleven papers published in this␣special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

3.
Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by 210Pb dating and covered a ~186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm−2 year−1 correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake’s history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation.  相似文献   

4.
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.  相似文献   

5.
While palaeohydrological changes in non-outlet lakes provide a key proxy indicator of past climatic fluctuations, for lake systems which have been chemically insensitive, it is necessary to use indicators of water depth rather than salinity to reconstruct their hydro- climatic histories. A study of diatoms in the modern sediments of Sidi Ali, a non-outlet lake in the Middle Atlas of Morocco, has shown a statistically significant correlation between water depth and the ratio of planktonic to littoral diatoms. This relationship is used to calibrate fossil diatom assemblages from a lake sediment core from the same lake to provide a quantitative index of water levels over the pastc. 6500 years. Palaeoecological evidence suggests that climatically induced hydrological variations have dominated the bulk of the mid-late Holocene lake sediment record, with significant human-induced catchment disturbance only occurring during the twentieth century. The pattern of water depth fluctuations suggests that the response time of the regional groundwater system to climatic forcing is <100 years.This is the third in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

6.
Upper Klamath Lake, in south-central Oregon, contains long sediment records with well-preserved diatoms and lithological variations that reflect climate-induced limnological changes. These sediment archives complement and extend high resolution terrestrial records along a north–south transect that includes areas influenced by the Aleutian Low and Subtropical High, which control both marine and continental climates in the western United States. The longest and oldest core collected in this study came from the southwest margin of the lake at Caledonia Marsh, and was dated by radiocarbon and tephrochronology to an age of about 45 ka. Paleolimnological interpretations of this core, based upon geochemical and diatom analyses, have been augmented by data from a short core collected from open water environments at nearby Howards Bay and from a 9-m core extending to 15 ka raised from the center of the northwestern part of Upper Klamath Lake. Pre- and full-glacial intervals of the Caledonia Marsh core are characterized and dominated by lithic detrital material. Planktic diatom taxa characteristic of cold-water habitats (Aulacoseira subarctica and A. islandica) alternate with warm-water planktic diatoms (A. ambigua) between 45 and 23 ka, documenting climate changes at millennial scales during oxygen isotope stage (OIS) 3. The full-glacial interval contains mostly cold-water planktic, benthic, and reworked Pliocene lacustrine diatoms (from the surrounding Yonna Formation) that document shallow water conditions in a cold, windy environment. After 15 ka, diatom productivity increased. Organic carbon and biogenic silica became significant sediment components and diatoms that live in the lake today, indicative of warm, eutrophic water, became prominent. Lake levels fell during the mid-Holocene and marsh environments extended over the core site. This interval is characterized by high levels of organic carbon from emergent aquatic vegetation (Scirpus) and by the Mazama ash (7.55 ka), generated by the eruption that created nearby Crater Lake. For a brief time the ash increased the salinity of Upper Klamath Lake. High concentrations of molybdenum, arsenic, and vanadium indicate that Caledonia Marsh was anoxic from about 7 to 5 ka. After the mid-Holocene, shallow, but open-water environments returned to the core site. The sediments became dominated (>80%) by biogenic silica. The open-water cores show analogous but less extreme limnological and climatic changes more typical of mid-lake environments. Millennial-scale lake and climate changes during OIS 3 at Upper Klamath Lake contrast with a similar record of variation at Owens Lake, about 750 km south. When Upper Klamath Lake experienced cold-climate episodes during OIS 3, Owens Lake had warm but wet episodes; the reverse occurred during warmer intervals at Upper Klamath Lake. Such climatic alternations apparently reflect the variable position and strength of the Aleutian Low during the mid-Wisconsin.  相似文献   

7.
We examined algal remains and fossil pigments in 210Pb-dated sediment cores from Lake Biwa to explore historical changes in the phytoplankton community of the lake over the past 100 years and to identify environmental factors that caused those changes. Fluxes of fossil pigments and algal remains were very low before the 1960s, but increased through the 1960s and 1970s, indicating that the lake had eutrophied in the 20 years since 1960. After 1980, however, fluxes of all fossil pigments and algal remains decreased or stabilized. Redundancy analysis with meteorological and limnological variables explained more than 70% of the variation of these fluxes and showed that the decrease in fluxes of most algal taxa that occurred in the 1980s was related to changes in meteorological variables such as wind velocity, rather than changes in the lake’s trophic state. Sedimentary records of algal remains also revealed that Aulacoseira nipponica, an endemic diatom species that grows in winter, decreased dramatically after 1980, while Fragilaria crotonensis, a cosmopolitan spring diatom species, became dominant. Replacement of one dominant diatom species by another could not be explained simply by changes in the lake trophic state, but was reasonably strongly related with an increase in winter water temperature. These results suggest that the phytoplankton community in Lake Biwa was influenced by changes in local environmental conditions (nutrient loading) through the 1960s and 1970s, but more so by regional (meteorological) and global (climate warming) factors since 1980.  相似文献   

8.
A 43 cm by 5 cm diameter sediment core sample was obtained from Ford Lake reservoir in Washtenaw County, Michigan, and sectioned at 1 cm intervals. The purpose of this study was to determine whether diatom communities in this reservoir have undergone quantifiable changes in abundance and composition since its creation. Thirty-one cm of this core appeared to represent material deposited since the creation of the reservoir based on changes in diatom abundance, the physical composition of the sediment and the change in biogenic SiO2 concentration. Fortyseven species of diatoms were identified total concentrations of diatom remains varied from 1×104 g-1 to 1×107 g-1. Prior to the establishment of the reservoir, the diatom flora was dominated by benthic taxa. Benthic diatoms were numerous throughout the entire core, but eutrophic taxa (e.g., Aulacoseira italica, Aulacoseira granulata, Stephanodiscus niagarae, Fragilaria crotonensis) dominated much of the core after the reservoir's creation. Total diatom density increased about tenfold in the about the first 10–15 years after the reservoir's creation before declining markedly.  相似文献   

9.
Data derived from monthly sediment traps in Sihailongwan, a maar lake in northeastern China, yielded a detailed record of seasonal sediment fluxes. Sediment fluxes correspond to seasonal climatic variations. The diatom flux shows two distinct peaks in September and November, whereas the flux of chrysophyte stomatocysts shows a maximum in May. The blooms of diatoms may be related to the subsequent deepening of the thermocline in September and lake overturn in spring and November, and influx of nutrient-rich groundwater sometime after the onset of the summer monsoon. The fluxes of organic matter and siliciclastics show a distinct seasonal pattern. They are varying between 0.03 and 0.56 g m−2 d−1 and reach a maximum in May. Quartz in the trap samples indicates that the siliciclastic matter may originate from distant aeolian sources. Sediment trap data and thin section investigations confirm the seasonality of Lake Sihailongwan sediments. Dark-colored layer, which mainly consists of valves of Cyclotella comta, might be deposited during autumn, and then is followed by a light-colored mixed layer starting with siliciclastics deposited after ice-out. The varved sediments in the U-shaped Lake Sihailongwan represent a sensitive siliciclastic and geochemical archive of paleoenvironmental variability in this data-sparse area. Detailed investigations of varved sediments should provide decadal to annual records of seasonal sediment flux and its relation to climatic parameters. Especially the diatomaceous layer is regarded to indicate summer climatic fluctuations, while the thick siliciclastic layer could be an indictor of dust events.  相似文献   

10.
We present a high-resolution, multiproxy reconstruction of the depositional history of Lake Arreo, northern Spain, for the last 60 years. We conducted sedimentological, geochemical and diatom analyses in short cores and made a detailed comparison with regional instrumental climate data (1952–2007), limnological monitoring of the lake (1992–2008) and recent land use changes that affect the lake catchment. Chronology is based on “floating” discontinuous varve counts and 137Cs and 14C dates. Four periods were identified in the Lake Arreo recent history: (1) prior to 1963, varved facies intercalated with fine turbidite deposits, and diatom assemblages dominated by Cyclotella taxa indicate predominantly meromictic conditions, (2) from 1964 to 1978, permanent anoxia persisted in bottom waters, as shown by similar facies and diatom assemblages as before, though detrital layers were coarser, (3) from 1979 to 1994, sediment delivery to the lake increased and laminated, clastic facies were deposited, and (4) from 1995 to 2008, dominance of massive facies and an increase in Fragilaria tenera and Achnanthes minutissima reflect relatively lower lake levels, less frequent bottom anoxia with more frequent water column mixing, similar to modern conditions. The period 1952–1979 was a time of meromixis and varved facies deposition, and was characterized by higher rainfall and less intense agricultural pressure in the watershed. There were two short humid periods (1992–1993 and 1996–1998) when monitoring data show more anoxic weeks per year and relatively higher lake levels. Increased cultivation of small landholdings in 1963, and particularly after 1979, caused a large increase in sediment delivery to the lake. The inferred lake evolution is in agreement with monitoring data that suggest a transition from dominantly meromictic conditions prior to 1993–1994 to a predominantly monomictic pattern of circulation since then, particularly after 2000. The synergistic effects of intensive water extraction for irrigation and lower rainfall since 1979, and particularly since 1994, brought the long period of meromictic conditions in Lake Arreo to an end. Water balance and sediment delivery to the lake are dominant factors that control the limnological and mixing conditions in Lake Arreo and they must be considered in management and restoration plans.  相似文献   

11.
Cyanobacterial carotenoids and diatom remains have been analyzed in recent sediments from the Windermere South Basin (WSB) to study the trophic evolution experienced by the lake. Dates in the top 30 cm were specifically established through radionuclide (210Pb and137Cs) analyses. Diatom stratigraphy shows dominance of the centric diatomsCyclotella comensis andC. radiosa and several benthic taxa in the early postglacial. This indicates oligotrophy in the WSB during that period. This assemblage was replaced by another dominated by the diatomAsterionella formosa in the 1870's, as has been established from the210Pb dating. From that date onwards, the lake underwent a progression towards eutrophy, indicated by the progressive increase inAulacoseira subarctica (c. 1930's),Fragilaria crotonensis (c. 1943), and more recently, of the centricsStephanodiscus parvus (c. 1971) andCyclotella meneghiniana (1988).Carotenoid stratigraphy reveals the differences between different sections of the core. Oscillaxanthin and myxoxanthophyll had very low records in the early and medium parts of the core, but increased fromc. 1950's, showing peaks atc. 1967, 1979 and 1987. Some of these peaks indicated a differential abundance ofOscillatoria, and are matched to those observed directly during the ongoing monitoring of the phytoplankton of the lake.The coincidence between the historic appearance of diatoms associated with nutrient-rich waters and the enhanced carotenoid occurrence suggest a common response to phosphorus enrichment, and that the progressive change towards eutrophy has been accentuated during the last twenty-five years.  相似文献   

12.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

13.
A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a 210Pb/137Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The 210Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high 210Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.  相似文献   

14.
Water chemistry and surface sediments were analyzed from 41 shallow lakes representing three previously-defined hydrological categories in the Slave River Delta, Northwest Territories, Canada, in order to identify relationships between hydrological and limnological conditions and their associations with recently deposited diatom assemblages. Evaporation-dominated lakes are physically removed from the influence of the Slave River, and are characterized by high alkalinity and high concentrations of nutrients and ions. In contrast, flood-dominated lakes tend to receive a pulse of floodwater from the Slave River during the spring thaw and have low alkalinity and low concentrations of most nutrients and ions. Exchange-dominated lakes are variably influenced by floodwaters from the Slave River and seiche events from Great Slave Lake throughout the spring thaw and open-water season, and are characterized by a broad array of limnological conditions that are largely dependent on the strength of the connection to these sources of floodwater. Specific diatom ‘indicator’ taxa have been identified that can discriminate these three hydrological lake categories. Evaporation-dominated lakes are associated with high relative abundance of common epiphytic diatom taxa, while diatoms indicative of flood- and exchange-dominated lakes span a wide range of habitat types (epiphytic, benthic) but also include unique planktonic diatoms (Stephanodiscus and Cyclostephanos taxa) that were not found in surface sediments of evaporation-dominated lakes. The planktonic diatom taxa originate from the Slave River, and thus are indicative of river influence. In complex, remote, freshwater ecosystems like the Slave River Delta, integration of results from hydrological and limnological approaches provides a necessary foundation to assess present, past and future hydroecological responses to changes in river discharge and climate.  相似文献   

15.
Namakan Lake, located in shared border waters in northeastern Minnesota and northwestern Ontario, was subjected to several anthropogenic impacts including logging, damming, water-level manipulations, and perhaps climate change. We used paleolimnology to determine how these stressors impacted Namakan Lake in comparison to a control lake (Lac La Croix) that was not subject to damming and hydromanagement. One core was retrieved from each lake for 210Pb dating and analysis of loss-on-ignition and diatom composition. 210Pb-derived chronologies from the cores indicated that sediment accumulation increased after logging and damming in Namakan Lake; Lac La Croix showed no significant change. Loss-on-ignition analysis also showed an increase in concentration and accumulation of inorganic material after damming in Namakan Lake; again, minimal changes were observed in Lac La Croix. Diatom communities in both lakes displayed community shifts at the peak of logging. Simultaneous, post-1970s diatom community changes may reflect regional climate warming. Taxonomic richness in Namakan Lake decreased sharply after damming and the peak of logging, and was followed by a slow recovery to taxonomic richness similar to that prior to damming. Ecological variability among post-damming diatom communities, however, was greater in Namakan Lake than in Lac La Croix. A diatom calibration set was used to reconstruct historical conductivity and total phosphorus (TP). Lac La Croix showed little historical change in conductivity and TP. In contrast, conductivity increased for several decades in Namakan Lake after damming, possibly in relation to several large fires and flooding. Total phosphorus also increased in Namakan Lake after damming, with a possible decrease in the last decade to pre-damming TP levels.  相似文献   

16.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

17.
The recent environmental history of Lake Lappajärvi in western Finland (63°00 N, 23°30 E, area 149 km2), a humic, brown water lake with an average phosphorus content of ca. 20 g l–1, was studied from short core sediment samples taken from the two main basins of the lake. Based on the stratigraphy of diatoms and chironomids and the sediment quality it was possible to distinguish four developmental stages during the past century: (1) a pre-industrial stage covering the time up to about 1935; (2) a stage of increasing nutrient loading (ca. 1936–1960); (3) a stage of pronounced erosion from lake level regulation and extensive ditching of the catchment area (ca. 1960–1970); and (4) a meso-eutrophic stage from ca. 1970 onwards.Acidophilous Aulacoseira distans coll. and other species typical of dystrophic, nutrient-poor lakes characterized the diatom assemblages during the first stage, and the profundal zoobenthic assemblages, characterized by Heterotrissocladius subpilosus and Micropsectra, indicated good hypolimnetic oxygen conditions and a low sedimentation of organic matter (approx. less than 50 g m–2 a–1). The increased loading rapidly led to changes both in diatoms and chironomids (e.g., to an early extinction of H. subpilosus in the 1950s). The process finally led to eutrophication with a successive proliferation of diatom species such as Asterionella formosa followed by Aulacoseira ambigua, Fragilaria crotonensis, and finally Melosira varians. The relative proportion of alkaliphilous species reached a maximum in the final stage and the original profundal chironomid fauna was replaced by Chironomus anthracinus gr. and C. plumosus which are typical of profundal areas suffering from temporal oxygen deficit. It is notable that the considerable decrease in waste water loading from the point sources (80–86% ) during the past two decades has not led to a recovery in the lake. This highlights the importance of diffuse loading from agriculture, forestry and other human activities even to this comparatively large lake.  相似文献   

18.
A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000?cal?year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400?cal?year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870?cal?year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1?°C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.  相似文献   

19.
During the middle and late Holocene, the Iberian Peninsula underwent large climatic and hydrologic changes, but the temporal resolution and regional distribution of available palaeoenvironmental records is still insufficient for a comprehensive assessment of the regional variability. The high sedimentation rate in karstic, meromictic Montcortès Lake (Catalan pre-Pyrenees) allows for a detailed reconstruction of the regional palaeoecology over the last 5,340 years using diatom analysis, aquatic pollen, sedimentological data, and historic documentary records. Results show marked fluctuations in diatom species assemblage composition, mainly between dominant Cyclotella taxa and small Fragilariales. We suggest that the conspicuous alternation between Cyclotella comta and C. cyclopuncta reflects changes in trophic state, while the succession of centric and pennate species most likely reflects changes in the hydrology of the lake. The diatom assemblages were used to identify six main phases: (1) high productivity and likely lower lake levels before 2350 BC, (2) lower lake levels and a strong arid phase between 2350 and 1850 BC, (3) lake level increase between 1850 and 850 BC, (4) relatively high lake level with fluctuating conditions during the Iberian and Roman Epochs (650 BC–350 AD), (5) lower lake levels, unfavourable conditions for diatom preservation, eutrophication and erosion triggered by increased human activities in the watershed during the Medieval Climate Anomaly (900–1300 AD), and (6) relatively higher lake levels during the LIA (1380–1850 AD) and afterwards. The combined study of diatoms, algae and pollen provides a detailed reconstruction of past climate, which refines understanding of regional environmental variability and interactions between climate and socio-economic conditions in the Pyrenees.  相似文献   

20.
Diatom responses to 20th century climate-related environmental change were assessed from three high-elevation lakes in the northern Canadian Cordillera. Dominance of small benthic Fragilaria diatoms reflect the generally cold conditions with long periods of ice cover that have characterized these mountain lakes over at least the last ~300 years until the period of recent warming. At the turn of the 20th century, salient shifts in the diatom assemblages reveal individualistic limnological responses with the onset of climate warming trends in northwest Canada. At YK3 Lake, an oligotrophic, chemically dilute, alpine lake, increased representation of the planktonic Cyclotella pseudostelligera may reflect longer ice-free conditions and/or more stable thermal stratification. By contrast, in the more productive, alkaline lakes (BC2 and Deadspruce lakes), changes to more diverse assemblages of periphytic diatoms suggest greater benthic habitat availability, most likely associated with the enhanced growth of aquatic plants with lengthening of the growing seasons. In addition, diatom assemblages from these lakes suggest less alkaline conditions following the onset of 20th century climate warming. Continued alkalinity reduction throughout the 20th century is qualitatively inferred at the lower elevation, treeline lake (Deadspruce Lake), while greater representation of alkaliphilous Fragilaria diatoms after ~1950 suggested increased alkalinity at the alpine BC2 Lake. Our results confirm the sensitivity of diatoms from high-elevation mountain lakes to regional climate change in northwest Canada. Individualistic limnological responses to 20th century warming are potentially attributed to differences in their physical setting (e.g., bedrock geology, elevation, catchment vegetation) in this complex mountain environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号