首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
GPS偏心观测及其精度分析   总被引:3,自引:0,他引:3  
由于种种条件的限制,在很多情况下GPS天线都无法实现真正的对中,在某些特殊情况下,例如观测站必须与VLBI站或SLR站重合,而又无法在这些站的标志中心安设接收机天线,这就要求进行GPS偏心观测。本文将着重对GPS偏心观测归心元素的测定方法、归心改正数的计算以及归心元素的测定精度进行讨论和分析。  相似文献   

2.
Evaluation of co-location ties relating the VLBI and GPS reference frames   总被引:1,自引:5,他引:1  
We have compared the VLBI and GPS terrestrial reference frames, realized using 5 years of time-series observations of station positions and polar motion, with surveyed co-location tie vectors for 25 sites. The goal was to assess the overall quality of the ties and to determine whether a subset of co-location sites might be found with VLBI–GPS ties that are self-consistent within a few millimeters. Our procedure was designed to guard against internal distortion of the two space-geodetic networks and takes advantage of the reduction in tie information needed with the time-series combination method by using the very strong contribution due to co-location of the daily pole of rotation. The general quality of the available ties is somewhat discouraging in that most have residuals, compared to the space-geodetic frames, at the level of 1–2 cm. However, by a careful selection process, we have identified a subset of nine local VLBI–GPS ties that are consistent with each other and with space geodesy to better than 4 mm (RMS) in each component. While certainly promising, it is not possible to confidently assess the reliability of this particular subset without new information to verify the absolute accuracy of at least a few of the highest-quality ties. Particular care must be taken to demonstrate that possible systematic errors within the VLBI and GPS systems have been properly accounted for. A minimum of two (preferably three or four) ties must be measured with accuracies of 1 mm or better in each component, including any potential systematic effects. If this can be done, then the VLBI and GPS frames can be globally aligned to less than 1 mm in each Helmert component using our subset of nine ties. In any case, the X and Y rotations are better determined, to about 0.5 mm, due to the contribution of co-located polar motion.  相似文献   

3.
Temperature variations at very long baseline interferometry (VLBI) sites cause thermal deformations of the VLBI antennas and corresponding displacements of the VLBI reference points. The thermal deformation effects typically contain seasonal and daily signatures. The amplitudes of the annual vertical motion of the antenna reference point can reach several millimeters, depending on the design of the antenna structure, on the material, and on the environmental effects such as global station position, station height and climatology effects. Simple methods to correct this effect use the difference of the environmental temperature with respect to a defined reference temperature, the antenna dimensions, the elevation of the antenna, the material of antenna structure. Applying these simple models for thermal deformation in the VLBI data analysis improves the baseline length repeatability by 3.5%. A comparison of these simple models with local thermal deformation measurements at the antennas in Onsala and Wettzell show that the local measurements and the modeled corrections agree well when the temperature of the antenna structure is used, but agree less good when the surrounding air temperatures are used. To overcome this problem we present a method to model temperature penetration into the antenna structures, that allows to model thermal deformation effects that agree with the observed vertical deformation of the Onsala and Wettzell radio telescopes with a root mean square deviation of 0.07 and 0.13 mm, respectively. Possible implementations in the VLBI analysis are presented, and the definition of an adequate reference temperature is discussed.  相似文献   

4.
In geodetic and geophysical applications of GPS, it is important to realize the ephemerides of the GPS satellites and the coordinates of station positions in a consistent reference system. At present, more than one reference system is being used by various GPS users depending on their specific applications. The WGS-84 and various reference frames based on satellite laser ranging (SLR), very long baseline interferometry (VLBI), or a combination of SLR and VLBI are the most commonly used in high precision geophysical applications. The WGS-84 is widely used in applications which rely on the GPS broadcast ephemeris. Station coordinates estimated in one system may have to be transformed to another for further use or for evaluation/comparison purposes. This paper presents a seven-parameter transformation between the WGS-84 and SLR/VLBI reference frames. The GPS double-differenced phase measurements for two consecutive weeks from a set of five Defense Mapping Agency (DMA) sites (defined in the WGS-84 frame) and from an augmented set of fifteen CIGNET sites (defined in the SLR/VLBI frame) were processed in a least squares estimation scheme to determine station coordinates, from which the transformation parameters were determined. A scale difference of about 0.2 ppm and an orientation difference in longitude of about 31 milliarcseconds were found to be the only parameters of significance between the adopted SLR/VLBI and the WGS-84 frames. Transformation between WGS-84 and the ITRF90 is also included, in which the scale difference is the same as before but the longitude rotation is about 16 mas.  相似文献   

5.
We assess the accuracy of some indirect approaches to invariant point (IVP), or system reference point, determination of satellite laser ranging (SLR) and very long baseline interferometry (VLBI) systems using both observed and simulated survey data sets. Indirect IVP determination involves the observation of targets located on these systems during specific rotational sequences and by application of geometrical models that describe the target motion during these sequences. Of concern is that most SLR and VLBI systems have limited rotational freedom thereby placing constraint on the reliability of parameter estimation, including the IVP position. We assess two current approaches to IVP analysis using survey data observed at the Yarragadee (Australia) SLR and the Medicina (Italy) VLBI sites and also simulated data of a large rotationally constrained (azimuth-elevation) VLBI system. To improve reliability we introduce and assess some new geometric conditions, including inter-axis, inter-circle and inter-target conditions, to existing IVP analysis strategies. The error component of a local tie specifically associated with the indirect determination of SLR and VLBI IVP is less than 0.5 mm. For systems with significant rotational limits we find that the inter-axis and inter-circle conditions are critical to the computation of unbiased IVP coordinates at the sub-millimetre level. When the inter-axis and inter-circle geometric conditions are not imposed, we retrieve biased vertical coordinates of the IVP (in our simulated VLBI system) in the range of 1.2–3.4 mm. Using the new geometric conditions we also find that the axis-offset estimates can be recovered at the sub- millimetre accuracy (0.5 mm).  相似文献   

6.
结合工程项目,对单基站CORS系统的测量精度进行分析,将在项目中使用单基站CORS系统采集的数据成果与四等城市坐标系GPS控制点数据进行对比,通过分析得出单基站CORS系统下进行平面点位的测量能够为中小城市测绘工程提供足够精度的实时定位服务,并且可以推广到其他同等精度要求的工程项目中,为今后的工程作业提供了参考和依据。  相似文献   

7.
为满足新建射电望远镜在单站或多站联合进行的深空探测或射电天文观测对中心坐标精确测定的要求,提出一种利用已知精确中心坐标的望远镜作为参照物,测量地平式射电望远镜中心点坐标的方法和测量数据处理方法。这一方法对场地和设备的要求较低,能够得到毫米级或亚毫米级的位置精度。尤其适合对天线阵列的中心位置进行测量。对国家天文台密云观测站的40 m射电望远镜进行了中心坐标测量,位置均方根误差为2.312 mm,满足了后续的观测工作对其位置的需求。  相似文献   

8.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   

9.
The combination of tropospheric parameters derived from different space-geodetic techniques has not been of large interest in geodesy so far. However, due to the high correlation between station coordinates and tropospheric parameters, the latter should not be neglected in combinations. This paper deals with the comparison and combination of tropospheric parameters derived from global positioning system (GPS) and very long baseline interferometry (VLBI) observations stemming from a 15-day campaign of continuous VLBI observations in 2002 (CONT02). The observation data of both techniques were processed homogeneously to avoid systematic differences between the solutions. We compared the tropospheric estimates of GPS and VLBI at eight co-location sites and found a very good agreement in the temporal behavior of the tropospheric zenith path delays (ZPD), reflected by correlation factors up to 0.98. Following this, a combination of the tropospheric parameters was performed. We demonstrate that the combination of tropospheric parameters leads to a stabilization of combined station networks. This becomes visible in the improvement of the repeatabilities of the station height components. Furthermore, the potential use of independent data from water vapor radiometers (WVRs) to validate space-technique-derived tropospheric parameters was investigated. Correlation coefficients of 0.95 or better were estimated between the tropospheric parameters of WVR and GPS or VLBI. Additionally, the utility of the tropospheric parameters for validation of local tie vectors was investigated. Both tropospheric zenith delays and tropospheric gradients were found to be very suitable to validate the height component and the horizontal components of the local tie, respectively.  相似文献   

10.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:5,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   

11.
GPS测量控制网为了与地面国家控制网进行联合的平差,必须与国家坐标系进行联测,GPS接收机有时也必须安置在有三角钢标的旧有控制点上。通过对此分析研究了三角钢标对GPS测量的影响,对设计和实施GPS测量的用户具有一定的参考价值。  相似文献   

12.
Results of the VLBI experiments conducted with Syowa Station, Antarctica   总被引:1,自引:0,他引:1  
The first successful geodetic Very Long Baseline Interferometry (VLBI) observations to Antarctica were made on baselines from Syowa Station (Antarctica) to Tidbinbilla (Australia) and to Kashima (Japan) in January 1990. Regular geodetic experiments started in 1998 with the installation of a permanent VLBI terminal at Syowa Station. These observations are conducted at the standard geodetic VLBI frequencies of 2.3 and 8.4 GHz, S- and X-Bands. In the first year, the 11-m multipurpose antenna at Syowa Station observed together with the 26-m radio telescope of the University of Tasmania in Australia and the 26-m radio telescope of the Hartebeesthoek Radio Astronomy Observatory in South Africa. From 1999, the experiments were expanded to also include the O’Higgins Station in Antarctica, Fortaleza in Brazil and Kokee on Hawaii. From 1999 until the end of 2003, 25 observing sessions have been reduced and analyzed using the CALC/SOLVE geodetic VLBI data reduction package. The results show that the horizontal baseline of Syowa-Hobart is increasing at the rate of 57.0±1.9 mm/year. The baseline Syowa-Hartebeesthoek is also increasing, but at the lower rate of 9.8±1.9 mm/year. The VLBI result of 2.0±3.1 mm/year and the GPS result of −1.9±0.7 mm/year for the Syowa-O’Higgins horizontal baseline support the hypothesis of one rigid Antarctic plate without intra-plate deformation, which is consistent with the NNR-NUVEL-1A global plate motion model. The location of the Euler pole of the Antarctic plate by VLBI is estimated as 59.7°S and 62.6°E with a rotation rate of 0.190 deg/Myr, while that by GPS in our study is estimated as 60.6°S and 42.2°E with a rotation rate of 0.221 deg/Myr. These pole positions are slightly different to that implied by the NNR-NUVEL-1A model of 63.0°S and 64.2°E with a rotation rate of 0.238 deg/Myr. VLBI observations over a longer time span may resolve small discrepancy of current plate motion from the NNR-NUVEL-1A model. The consistency of the VLBI coordinates with the GPS coordinates at Syowa Station, after correction for the local tie vector components between the two reference markers, is also discussed.  相似文献   

13.
Combinations of station coordinates and velocities from independent space-geodetic techniques have long been the standard method to realize robust global terrestrial reference frames (TRFs). In principle, the particular strengths of one observing method can compensate for weaknesses in others if the combination is properly constructed, suitable weights are found, and accurate co-location ties are available. More recently, the methodology has been extended to combine time-series of results at the normal equation level. This allows Earth orientation parameters (EOPs) to be included and aligned in a fully consistent way with the TRF. While the utility of such multi-technique combinations is generally recognized for the reference frame, the benefits for the EOPs are yet to be quantitatively assessed. In this contribution, which is a sequel to a recent paper on co-location ties (Ray and Altamimi in J Geod 79(4–5): 189–195, 2005), we have studied test combinations of very long baseline interferometry (VLBI) and Global Positioning System (GPS) time-series solutions to evaluate the effects on combined EOP measurements compared with geophysical excitations. One expects any effect to be small, considering that GPS dominates the polar motion estimates due to its relatively dense and uniform global network coverage, high precision, continuous daily sampling, and homogeneity, while VLBI alone observes UT1-UTC. Presently, although clearly desirable, we see no practical method to rigorously include the GPS estimates of length-of-day variations due to significant time-varying biases. Nevertheless, our results, which are the first of this type, indicate that more accurate polar motion from GPS contributes to improved UT1-UTC results from VLBI. The situation with combined polar motion is more complex. The VLBI data contribute directly only very slightly, if at all, with an impact that is probably affected by the weakness of the current VLBI networks (small size and sparseness) and the quality of local ties relating the VLBI and GPS frames. Instead, the VLBI polar motion information is used primarily in rotationally aligning the VLBI and GPS frames, thereby reducing the dependence on co-location tie information. Further research is needed to determine an optimal VLBI-GPS combination strategy that yields the highest quality EOP estimates. Improved local ties (including internal systematic effects within the techniques) will be critically important in such an effort.  相似文献   

14.
O. Titov 《Journal of Geodesy》2007,81(6-8):455-468
This paper evaluates the effect of the accuracy of reference radio sources on the daily estimates of station positions, nutation angle offsets, and the estimated site coordinates determined by very long baseline interferometry (VLBI), which are used for the realization of the international terrestrial reference frame (ITRF). Five global VLBI solutions, based on VLBI data collected between 1979 and 2006, are compared. The reference solution comprises all observed radio sources, which are treated as global parameters. Four other solutions, comprising different sub-sets of radio sources, were computed. The daily station positions for all VLBI sites and the corrections to the nutation offset angles were estimated for these five solutions. The solution statistics are mainly affected by the positional instabilities of reference radio sources, whereas the instabilities of geodetic and astrometric time-series are caused by an insufficient number of observed reference radio sources. A mean offset of the three positional components (Up, North, East) between any two solutions was calculated for each VLBI site. From a comparison of the geodetic results, no significant discrepancies between the respective geodetic solutions for all VLBI sites in the Northern Hemisphere were found. In contrast, the Southern Hemisphere sites were more sensitive to the selected set of reference radio sources. The largest estimated mean offset of the vertical component between two solutions for the Australian VLBI site at Hobart was 4 mm. In the worst case (if a weak VLBI network observed a limited number of reference radio sources) the daily offsets of the estimated height component at Hobart exceeded 100 mm. The exclusion of the extended radio sources from the list of reference sources improved the solution statistics and made the geodetic and astrometric time-series more consistent. The problem with the large Hobart height component offset is magnified by a comparatively small number of observations due to the low slewing rate of the VLBI dish (1°/ s). Unless a minimum of 200 scans are performed per 24-h VLBI experiment, the daily vertical positions at Hobart do not achieve 10 mm accuracy. Improving the slew rate at Hobart and/or having an increased number of new sites in the Southern Hemisphere is essential for further improvement of geodetic VLBI results for Southern Hemisphere sites.  相似文献   

15.
Within the International VLBI Service for Geodesy and Astrometry (IVS) Monte Carlo simulations have been carried out to design the next generation VLBI system (“VLBI2010”). Simulated VLBI observables were generated taking into account the three most important stochastic error sources in VLBI, i.e. wet troposphere delay, station clock, and measurement error. Based on realistic physical properties of the troposphere and clocks we ran simulations to investigate the influence of the troposphere on VLBI analyses, and to gain information about the role of clock performance and measurement errors of the receiving system in the process of reaching VLBI2010’s goal of mm position accuracy on a global scale. Our simulations confirm that the wet troposphere delay is the most important of these three error sources. We did not observe significant improvement of geodetic parameters if the clocks were simulated with an Allan standard deviation better than 1 × 10−14 at 50 min and found the impact of measurement errors to be relatively small compared with the impact of the troposphere. Along with simulations to test different network sizes, scheduling strategies, and antenna slew rates these studies were used as a basis for the definition and specification of VLBI2010 antennas and recording system and might also be an example for other space geodetic techniques.  相似文献   

16.
We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.  相似文献   

17.
流动VLBI天线系统噪声温度及天线效率测量   总被引:1,自引:0,他引:1  
我国自行研制的第一套流动VLBI系统——DCW—01型流动VLBI测量仪,目前已在国家重大科学工程“中国地壳运动观测网络”中投入使用。在流动VLBI的观测试验中,天线系统噪声温度和天线效率是观测前系统调试和检测的两项重要内容。天线系统噪声温度是衡量流动VLBI观测系统内部噪声程度的特性指标;天线效率反映了天线系统对到达天线能量的刊用率,在很多计算公式中是一个很重要的参数。因此,精确地测量它们的值是进行相关处理和计算的前提。文中结合我国流动VLBI观测站的研制与建设,介绍了流动VLBI测量仪的天线及接收机系统,并详细阐述了其天线系统噪声温度和天线效率的测量。  相似文献   

18.
Time series of daily position solutions at eight co-located GPS and VLBI stations are used to assess the frequency features in the solutions over various time-scales. This study shows that there are seasonal and inter-annual signals in all three coordinate components of the GPS and VLBI solutions. The power and frequency of the signals vary with time, the station considered and the coordinate components, and between the GPS and VLBI solutions. In general, the magnitudes of the signals in the horizontal coordinate components (latitude and longitude) are weaker than those in the height component. The weighted means of the estimated annual amplitudes from the eight GPS stations are, respectively, 1.0, 0.8 and 3.6 mm for the latitude, longitude and height components, and are, respectively, 1.5, 0.7 and 2.2 mm for the VLBI solutions. The phases of the annual signals estimated from the GPS and VLBI solutions are consistent for most of the co-located stations. The seasonal signals estimated from the VLBI solutions are, in general, more stable than those estimated from the GPS solutions. Fluctuations at inter-annual time-scales are also found in the series. The inter-annual fluctuations are up to ∼5 mm for the latitude and longitude components, and up to ∼10 mm for the height component. The effects of the seasonal and inter-annual variations on the estimated linear rates of movement of the stations are also evaluated.  相似文献   

19.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

20.
Analysis of the EUREF-89 GPS data from the SLR/VLBI sites   总被引:1,自引:0,他引:1  
In May 1989, the IAG Subcommission for the European Reference Frame organized a GPS measurement campaign, called EUREF-89, to establish a common European Reference Frame. During a 2-week period various types of GPS receivers were deployed at about 100 different locations in Europe, which included many national geodetic first order points and most of the well-known SLR and VLBI sites. In this study, the measurements from those SLR and VLBI sites, and three additional points in The Netherlands, have been analyzed adopting a fiducial network approach. In the first place, the study provided valuable experience in the use of the GIPSY software for the analysis of GPS data from large networks equipped with a mixture of receiver types. Furthermore, this analysis represents an independent check of the SLR/VLBI network, used as the reference frame for the official EUREF solution. Daily solutions of baselines up to 2500 km in length have been obtained with a repeatability of 0.5–2.0 parts in 108, while the agreement with SLR results is at about the same level. The accuracy of the estimated coordinates is at a level of about 4.0 cm in the horizontal and 6.0 cm in the vertical direction. Of particular interest are the results for some baselines in Greece, which have also been measured by mobile SLR in the framework of the WEGENER/MEDLAS project. The GPS results seem to confirm the trends in the baseline length changes emerging from those SLR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号