首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

2.
Along the northeast Greenland continental margin, bedrock on interfjord plateaus is highly weathered, whereas rock surfaces in fjord troughs are characterized by glacial scour. Based on the intense bedrock weathering and lack of glacial deposits from the last glaciation, interfjord plateaus have long been thought to be ice-free throughout the last glacial maximum (LGM). In recent years there is growing evidence from shelf and fjord settings that the northeast Greenland continental margin was more extensively glaciated during the LGM than previously thought. However, little is still known from interfjord settings. We present cosmogenic 10Be data from meltwater channels and weathered sandstone outcrops on Jameson Land, an interfjord highland north of Scoresby Sund. The mean exposure age of samples from channel beds (n = 3) constrains on the onset of deglaciation on interior Jameson Land to 18.5 ± 1.3–21.4 ± 1.9 ka (for erosion conditions of 0–10 mm/ka, respectively). This finding adds to growing evidence that the northeast Greenland continental margin was more heavily glaciated during the LGM than previously thought.  相似文献   

3.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding and interpretation of ‘numbers’ produced about the depositional age of an erratic boulder by cosmogenic nuclide surface-exposure dating is important in the construction of glacial chronology. We have sampled three ‘Findlinge’ (glacially transported boulders) located on the right-lateral margin of the Aare glacier at Möschberg, Grosshöchstetten, southeast of Bern, with the aim of shedding light on this topic. The boulders have the same depositional, but different post-depositional histories: simple exposure; exhumation; and human impact. This sampling is specially selected for this study, since the boulders showing exhumation and human impact would not have been sampled in a regular surface-exposure dating application. We measured cosmogenic 10Be concentrations and calculated apparent exposure ages that are 13.6 ± 0.5, 18.1 ± 0.8, and 7.5 ± 0.4 ka, respectively. The exposure age of the first boulder reflects exhumation. The apparent exposure age of 18.1 ± 0.8 ka (erosion-corrected exposure age 19.0 ± 0.9 ka) from the second boulder correlates well with the end of the Alpine and global last glacial maximum. The third boulder shows evidence of quarrying as it is surrounded by a rim of excavation material, which is also reflected by the 7.5 ± 0.4 ka apparent exposure age. We modeled the variation of 10Be concentrations with depth down into the sediment in which the first (exhumed) boulder was once buried in, and down into the third (quarried) boulder. According to our modeling, we determined that the exhumed ‘Findling’ was buried in sediment at a depth of around 0.5 m, and around 2 m of rock was quarried from the third ‘Findling’. Our results reveal the importance of sampling for surface-exposure dating within a well defined field context, as post-depositional impacts can easily hinder exposure-dating of surfaces.  相似文献   

5.
This paper presents results of the analysis of paired cosmogenic isotopes (10Be and 26Al) from eight quartz‐rich samples collected from ice‐moulded bedrock on the Aran ridge, the highest land in the British Isles south of Snowdon. On the Aran ridge, comprising the summits of Aran Fawddwy (905 m a.s.l.) and Aran Benllyn (885 m a.s.l.), 26Al and 10Be ages indicate complete ice coverage and glacial erosion at the global Last Glacial Maximum (LGM). Six samples from the summit ridge above 750–800 m a.s.l. yielded paired 10Be and 26Al ages ranging from 17.2 to 34.4 ka, respectively. Four of these samples are very close in age (10Be ages of 17.5 ± 0.6, 17.5 ± 0.7, 19.7 ± 0.8 and 20.0 ± 0.7 ka) and are interpreted as representing the exposure age of the summit ridge. Two other summit samples are much older (10Be ages of 27.5 ± 1.0 and 33.9 ± 1.2 ka) and these results may indicate nuclide inheritance. The 26Al/10Be ratios for all samples are indistinguishable within one‐sigma uncertainty from the production rate ratio line, indicating that there is no evidence for a complex exposure history. These results indicate that the last Welsh Ice Cap was thick enough to completely cover the Aran ridge and achieve glacial erosion at the LGM. However, between c. 20 and 17 ka ridge summits were exposed as nunataks at a time when glacial erosion at lower elevations (below 750–800 m a.s.l.) was achieved by large outlet glaciers in the valleys surrounding the mountains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The sedimentary record around outer Scorcsby Sund begins with the Scorcsby Sund glaciation (≅ isotope stage 6), but is incomplete. Both at Kap Hope, headward of the fjord mouth, and at Kikiakajik on the outer coast. there are shallow marine sediments, correlated with the Langelandselv interglaciation (≅ isotope substagc 5e) on the basis of molluse assemblages and luminescence dates. Abundant Balanus crenatus , and several bivalves. show that thc adveetion of warm Atlantic water to the East Greenland coast was higher during that interglacial than during the Holocenc. Glacial striae at Kap Brewster (facing the open ocean) and till on top of the interglacial beds at Kikiakajik show that both an outlet from the Greenland Iee Sheet, and more local glaciers reached the continental shelf during the Weichselian. This glacial event is poorly dated. but tentatively correlated with the Flakkerhuk stade (≅ 19 15 ka BP) when, from marine geological data, it is suggested that thc Scoresby Sund glacier terminated c . 30 km east of Kap Brewster. During the Milne Land stade ( c . 10 ka BP) there was a resurgence of local ice caps in the mountains both north and south of the fjord mouth, but Scoresby Sund and Hall Bredning probably remained free of glaciers. Dating of these events was achieved through Iuminescence- (TL and OSL) and the 14C-method. and biostratigraphical and amino acid correliition Interglacial shells on thc outer coast show much lower amino acid D/L ratios than shells of the same age within the Scoresby Sund area. This may indicate that the outer coast remained free of ice cover and marine inundation much longer, arid suffered colder temperatures than areas along the fjord.  相似文献   

7.
We measured in situ cosmogenic 10Be in 16 bedrock and 14 boulder samples collected along a 40-km transect outside of and normal to the modern ice margin near Sikuijuitsoq Fjord in central-west Greenland (69°N). We use these data to understand better the efficiency of glacial erosion and to infer the timing, pattern, and rate of ice loss after the last glaciation. In general, the ages of paired bedrock and boulder samples are in close agreement (r2 = 0.72). Eleven of the fourteen paired bedrock and boulder samples are indistinguishable at 1σ; this concordance indicates that subglacial erosion rates are sufficient to remove most or all 10Be accumulated during previous periods of exposure, and that few, if any, nuclides are inherited from pre-Holocene interglaciations. The new data agree well with previously-published landscape chronologies from this area, and suggest that two chronologically-distinct land surfaces exist: one outside the Fjord Stade moraine complex (~10.3 ± 0.4 ka; n = 7) and another inside (~8.0 ± 0.7 ka; n = 21). Six 10Be ages from directly outside the historic (Little Ice Age) moraine show that the ice margin first reached its present-day position ~7.6 ± 0.4 ka. Early Holocene ice margin retreat rates after the deposition of the Fjord Stade moraine complex were ~100–110 m yr?1. Sikuijuitsoq Fjord is a tributary to the much larger Jakobshavn Isfjord and the deglaciation chronologies of these two fjords are similar. This synchronicity suggests that the ice stream in Jakobshavn Isfjord set the timing and pace of early Holocene deglaciation of the surrounding ice margin.  相似文献   

8.
Trimlines separating glacially abraded lower slopes from blockfield‐covered summits on Irish mountains have traditionally been interpreted as representing the upper limit of the last ice sheet during the Last Glacial Maximum (LGM). Cosmogenic 10Be exposure ages obtained for samples from glacially deposited perched boulders resting on blockfield debris on the summit area of Slievenamon (721 m a.s.l.) in southern Ireland demonstrate emplacement by the last Irish Ice Sheet (IIS), implying preservation of the blockfield under cold‐based ice during the LGM, and supporting the view that trimlines throughout the British Isles represent former englacial thermal regime boundaries between a lower zone of warm‐based sliding ice and an upper zone of cold‐based ice. The youngest exposure age (22.6±1.1 or 21.0±0.9 ka, depending on the 10Be production rate employed) is statistically indistinguishable from the mean age (23.4±1.2 or 21.8±0.9 ka) obtained for two samples from ice‐abraded bedrock at high ground on Blackstairs Mountain, 51 km to the east, and with published cosmogenic 36Cl ages. Collectively, these ages imply (i) early (24–21 ka) thinning of the last IIS and emergence of high ground in SE Ireland; (ii) relatively brief (1–3 ka) glacial occupation of southernmost Ireland during the LGM; (iii) decoupling of the Irish Sea Ice Stream and ice from the Irish midlands within a similar time frame; and (iv) that the southern fringe of Ireland was deglaciated before western and northern Ireland.  相似文献   

9.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Marine, fluvial and glacigene sediments exposed in coastal cliffs and stream-cut sections in East Greenland between latitudes 69° and 78° N display a record of Quaternary climatic and environmental change going back to pre-Saalian times (> 240 ka), but with main emphasis on the last interglacial/glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating, amino acid analyses, as well as 14C- and uranium series dating. The pre-Weichselian Lollandselv and Scoresby Sund glaciations were the most extensive. During the Weichselian the Inland Ice margin in this part of East Greenland was apparently very stable. The Aucellaelv, Jyllandselv and Flakkerhuk stades mark the advance and subsequent retreat of outlet glaciers from the Inland Ice which advanced through the wide Scoresby Sund basin and reached the inner shelf. In-between the glacier advances, three interglacial or interstadial periods have been recognized. During the Langelandselv interglacia-tion (≅ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faunas show that summer temperatures were 3–4°C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sø interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2° -3° lower than the present. The marine and fluvial sediments from the second ice-free period, the Mønselv interstade, are devoid of organic remains.  相似文献   

11.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

12.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

13.
The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps.  相似文献   

14.
Almost 90% of 39 m of core material recovered from Scoresby Sund and the adjacent East Greenland shelf is massive diamicton, interpreted to be formed predominantly by the release of iceberg rafted debris and reworking by iceberg scouring. There is also likely to be a contribution from suspension settling of fines derived from glaciofluvial sources. Model calculations suggest that the 14C derived Holocene sedimentation rate of 0.1-0.3 m 1000 yr−1 in Scoresby Sund can be accounted for mainly by iceberg rafting of debris. A further 4% of core material is of gravel or coarse sand lenses, interpreted to reflect iceberg dumping of debris. Intensive iceberg scouring, which reworks sea floor sediments, is observed on acoustic records from over 30 000 km2 of the Scoresby Sund fiord system and the adjacent East Greenland shelf (69-72°N and 75°N). The rate of iceberg production from Greenland Ice Sheet outlet glaciers, and iceberg drift tracks on the shelf, suggests that iceberg rafting and scouring may be important over a significant proportion of the 500 000 km2 area above the shelf break. The relatively extensive modern occurrence of massive diamicton, formed by iceberg rafting and scouring, together with suspension settling of fines, suggests that it may also be a significant facies in the glacier-influenced geological record. The recognition in the geological record of the massive diamicton facies described above may also indicate the former presence of fast flowing ice sheet outlet glaciers.  相似文献   

15.
The east Greenland margin has been influenced by oceanographic and cryospheric processes since the late Miocene, when the southwards flow of the East Greenland Current (EGC) initiated and ice sheets first advanced across the margin. However, the relative importance of these processes, and their influence on the sedimentation of the margin through time remains poorly understood. High‐resolution single‐channel seismic, chirp sub‐bottom profiles and swath bathymetry data were acquired along the middle/lower slope and proximal basinal area off Liverpool Land, central‐east Greenland margin. In this study, seismic‐stratigraphical and morphological analyses allowed us to distinguish between the major sedimentary processes that influenced this margin during the Quaternary. The stratigraphical architecture reveals mass transport deposits (MTDs) related to glacially influenced down‐slope sedimentation. These are intercalated with buried contourite systems associated with bottom‐current controlled along‐slope sedimentation. The distribution of the MTDs suggests the influence of two distinct ice‐stream systems. Initial phases of down‐slope deposition during the early‐middle Quaternary appears to be related to distal deposition fed by an ice stream from the Scoresby Sund area in the south. Shallow sedimentary processes, together with morphological analysis of the sea floor, show that the most recent activity of down‐slope processes during the latest Quaternary has occurred in the north, linked to an ice stream from the Kong Oscar Fjord area. These observations document a temporal shift in the relative dominance of the Scoresby Sund and Kong Oscar Fjord ice‐stream systems. The glacial influence on the margin has been interrupted by periods of stronger activity of along‐slope bottom‐current flow, demonstrating that the EGC periodically controlled sedimentation on the continental margin.  相似文献   

16.
Egesen moraines throughout the Alps mark a glacial advance that has been correlated with the Younger Dryas cold period. Using the surface exposure dating method, in particular the measurement of the cosmogenic nuclide 10Be in rock surfaces, we attained four ages for boulders on a prominent Egesen moraine of Great Aletsch Glacier, in the western Swiss Alps. The 10Be dates range from 10 460±1100 to 9040±1020 yr ago. Three 10Be dates between 9630±810 and 9040±1020 yr ago are based upon samples from the surfaces of granite boulders. Two 10Be dates, 10 460±1100 and 9910±970 yr ago, are based upon a sample from a quartz vein at the surface of a schist boulder. In consideration of the numerous factors that can influence apparently young 10Be dates and the scatter within the data, we interpret the weighted mean of four boulder ages, 9640±430 yr (including the weighted mean of two 10Be dates of the quartz vein), as a minimum age of deposition of the moraine. All 10Be dates from the Great Aletsch Glacier Egesen moraine are consistent with radiocarbon dates of nearby bog‐bottom organic sediments, which provide minimum ages of deglaciation from the moraine. The 10Be dates from boulders on the Great Aletsch Glacier Egesen moraine also are similar to 10Be dates from Egesen moraines of Vadret Lagrev Glacier on Julier Pass, in the eastern Swiss Alps. Both the morphology of the Great Aletsch Glacier Egesen moraine and the comparison with 10Be dates from the inner Vadret Lagrev Egesen moraine support the hypothesis that the climatic cooling that occurred during the Younger Dryas cold episode influenced the glacial advance that deposited the Great Aletsch Glacier Egesen moraine. Because of the large size and slow response time of Great Aletsch Glacier, we suggest that the Great Aletsch Glacier Egesen moraine was formed during the last glacial advance of the multiphased Egesen cold period, the Kromer stage, during the Preboreal chron. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
It is still disputed whether very old archaeological and palaeontological remains found in the Belle‐Roche palaeocave (eastern Belgium) pertain to the Early (~1 Ma) or Middle (~0.5 Ma) Pleistocene. Here, in situ‐produced cosmogenic 10Be concentrations from a depth profile in nearby sediments of the Belle‐Roche terrace (Amblève Main Terrace level) are used as an indirect solution of this chronological issue. The distribution of 10Be concentrations in the upper 3 m of this profile displays the theoretically expected exponential decrease with depth. Assuming a single exposure episode, we obtain a best fit age of 222.5±31 ka for the time of terrace abandonment. However, below 3 m, the 10Be concentrations show a marked progressive increase with depth. This distinctive cosmogenic signal is interpreted as the result of slow aggradation of the fluvial deposits over a lengthy interval. Modelling of the whole profile thus suggests that the onset of the terrace formation occurred at around 550 ka, with a sediment accumulation rate of ~20 mm ka?1. Based on two slightly different reconstructions of the geomorphic evolution of the area and a discussion of the temporal link between the cave and Main Terrace levels, we conclude that the fossil‐bearing layers in the palaeokarst pertain most probably to MIS 14–13, or possibly MIS 12–11. This age estimate for the large mammal association identified in the Belle‐Roche palaeokarst and the attribution to MIS 14–13 of a similar fauna found in the lowermost fossiliferous layers of the Caune de l'Arago (Tautavel) are in mutual support. Our results therefore confirm the status of the Belle‐Roche site as a reference site for the Cromerian mammal association in NW Europe.  相似文献   

18.
We use cosmogenic 10Be surface exposure age techniques at a locality close to Rannoch Moor, western Scottish Highlands, in order to establish the age and chronology of its most recent glaciation. Glacial erratics and an in situ bedrock quartz vein sampled from this site—the summit of Beinn Inverveigh—have yielded zero‐erosion exposure ages of 12.9 ± 1.5 ka to 11.6 ± 1.0 ka, implying complete ice cover of the mountain during the Younger Dryas, or Loch Lomond Stadial. These results fit closely with published 14C dates that bracket the maximum (lateral) extent of ice cap outlet glaciers, and are the first internally consistent ages to specifically address this period of glaciation in Scotland. Furthermore, the dates imply that previous palaeoglaciological reconstructions for this area may have underestimated both the thickness of the former ice cap and, by implication, its volume. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

19.
Cosmogenic 10Be surface exposure ages for bedrock sites around Torridon and the Applecross Peninsula in Wester Ross, northwest Scotland, provide new insights into the Lateglacial transition. Accounting for postglacial weathering, six statistically comparable exposure ages give a late Younger Dryas (G‐1) exposure age of 11.8 ± 1.1 ka. Two further outliers are tentative pre‐Younger Dryas exposure ages of 13.4 ± 0.5 ka in Torridon, and 17.5 ± 1.2 ka in Applecross. The Younger Dryas exposure ages have compelling implications for the deglaciation of marginal Loch Lomond Stadial ice fields in Torridon and Applecross. Firstly, they conflict with predictions of restricted ice cover and rapid retreat based on modelling experiments and climate proxies, instead fitting a model of vertically extensive and prolonged ice coverage in Wester Ross. Secondly, they indicate that >2 m of erosion took place in the upper valleys of Torridon and Applecross during the Younger Dryas, implying a dominantly warm‐based glacial regime. Finally, the exposure ages have clarified that corrie (cirque) glaciers did not readvance in Wester Ross, following final deglaciation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
On 12 September AD 1717, a rock volume larger than 10 million m3 collapsed onto the Triolet Glacier, mobilized a mass composed of ice and sediment and travelled more than 7 km downvalley in the upper Ferret Valley, Mont Blanc Massif (Italy). This rock avalanche destroyed two small settlements, causing seven casualties and loss of livestock. No detailed maps were made at the time. Later investigators attributed accumulations of granitic boulders and irregular ridges on the upper valley floor to either glacial deposition, or the AD 1717 rock avalanche, or a complex mixture of glacial deposition, earlier rock avalanche and AD 1717 rock avalanche origin. In this study, we present cosmogenic 10Be exposure ages from nine boulders in the extensive chaotic boulder deposit with irregular ridges, two from Holocene glacier‐free areas, and one from a Little Ice Age moraine. Exposure ages between 330 ± 23 and 483 ± 123 a from eight of nine boulders from the chaotic deposit indicate that at least seven were deposited by the AD 1717 rock avalanche. The other three boulders yielded 10Be exposure ages of 10 900 ± 400, 9700 ± 400 and 244 ± 97 a, respectively. Our results are in good agreement with the existing chronology from dendrochronology and lichenometry, and radiocarbon analysis of wood samples, but not with older 14C ages from a peat bog in the upper part of the valley. Based on the new age control, the rock avalanche deposits cover the whole bottom of the upper Ferret valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号