首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last 30 years, the climate of the West African Sahel has undergone various changes, especially in terms of rainfall. This has large consequences for the poor-resource farmers depending mainly on rainfed agriculture. This paper investigates the impacts of current climate variability and future climate change on groundnut and cowpea production in Niger for three major agricultural regions, including the groundnut basin.Niger was one of the largest West African groundnut producing and exporting countries. Groundnut production – as a cash crop – dropped fromabout 312,000 tons in the mid 1960s (about 68% exported) to as low as 13,000tons in 1988 and increased again to 110,000 tons in 2000. Cowpea, a food crop, showsa different tendency, going from 4,000 tons in the mid fifties to a maximum of 775,000 tons in 1997, and its cultivated area is still increasing. It is also a cash crop in local economies (especially for women).To highlight the impact of climate change on groundnut and cowpea production (significantly determined by rainfall in July, August and September), the following components of the rainfall regime were calculated for the period 1951–1998: mean annual and monthly rainfall, beginning, end and lengthof the rainy season, number of rainy days per month, amount of rainfall per rainy day and the maximum length of dry spell per month. Three sub-periods whose duration varied per region were defined: for Dosso 1951–1968,1969–1984 and 1985–1998; for Maradi 1951–1970, 1971–1987 and1988–1998; and for Zinder 1951–1966, 1967–1984 and 1985–1998. A change in rainfallregime components was observed between the three sub-periods, which were characterized in chronological order by wet, dry and intermediate conditions. To assess the impact of climate variability and change on groundnut and cowpea production, a statistical modeling approach has been followed, based on thirteen predictors as described and discussed in the preceding paper. Climate change is mimicked in terms of reduced total amount of rainfall for the three main rainfall months and an increased temperature, while maintaining other significant predictors at a constant level. In 2025,production of groundnut is estimated to be between 11 and 25% lower, while cowpeayield will fall maximally 30%. Various strategies to compensate thispotential loss are presented for the two crops.  相似文献   

2.
This work was aimed at assessing the role of climate extremes in climate change impact assessment of typical winter and summer Mediterranean crops by using Regional Circulation Model (RCM) outputs as drivers of a modified version of the CropSyst model. More specifically, climate change effects were investigated on sunflower (Helianthus annuus L.) and winter wheat (Triticum aestivum L.) development and yield under the A2 and B2 scenarios of the IPCC Special Report on Emissions Scenarios (SRES). The direct impact of extreme climate events (i.e. heat stress at anthesis stage) was also included. The increase in both mean temperatures and temperature extremes under A2 and B2 scenarios (2071?C2100) resulted in: a general advancement of the main phenological stages, shortening of the growing season and an increase in the frequency of heat stress during anthesis with respect to the baseline (1961?C1990). The potential impact of these changes on crop yields was evaluated. It was found that winter and summer crops may possess a different fitting capacity to climate change. Sunflower, cultivated in the southern regions of the Mediterranean countries, was more prone to the direct effect of heat stress at anthesis and drought during its growing cycle. These factors resulted in severe yield reduction. In contrast, the lower frequency of heat stress and drought allowed the winter wheat crop to attain increased yields with respect to the baseline period. It can be concluded that the impact of extreme events should be included in crop-modelling approaches, otherwise there is the risk of underestimating crop yield losses, which in turn would result in the application of incorrect policies for coping with climate change.  相似文献   

3.
Assessment of climate change impact on Eastern Washington agriculture   总被引:2,自引:0,他引:2  
An assessment of the potential impact of climate change and the concurrent increase of atmospheric CO2 concentration on eastern Washington State agriculture was conducted. Climate projections from four selected general circulation models (GCM) were chosen, and the assessment included the crops with larger economic value for the state (apples, potatoes, and wheat). To evaluate crop performance, a cropping system simulation model (CropSyst) was utilized using historical and future climate sequences. Crops were assumed to receive adequate water (irrigated crops), nutrients, and control of weeds, pests and diseases. Results project that the impact of climate change on eastern Washington agriculture will be generally mild in the short term (i.e., next two decades), but increasingly detrimental with time (potential yield losses reaching 25% for some crops by the end of the century). However, CO2 elevation is expected to provide significant mitigation, and in fact result in yield gains for some crops. The combination of increased CO2 and adaptive management may result in yield benefits for all crops. One limitation of the study is that water supply was assumed sufficient for irrigated crops, but other studies suggest that it may decrease in many locations due to climate change.  相似文献   

4.
Most African countries struggle with food production and food security. These issues are expected to be even more severe in the face of climate change. Our study examines the likely impacts of climate change on agriculture with a view to propose adaptation options, especially in hard hit regions. We use a crop model to evaluate the impact of various sowing decisions on the water satisfaction index (WSI) and thus the yield of maize crop. The crop model is run for 176 stations over southern Africa, subject to climate scenarios downscaled from 6 GCMs. The sensitivity of these simulations is analysed so as to distinguish the contributions of sowing decisions to yield variation. We compare the WSI change between a 20 year control period (1979–1999) and a 20 year future period (2046–2065) over southern Africa. These results highlight areas that will likely be negatively affected by climate change over the study region. We then calculate the contribution of sowing decisions to yield variation, first for the control period, then for the future period. This contribution (sensitivity) allows us to distinguish the efficiency of adaptation decisions under both present and future climate. In most countries rainfall in the sowing dekad is shown to contribute more significantly to the yield variation and appears as a long term efficient decision to adapt. We discuss these results and additional perspectives in order to propose local adaptation directions.  相似文献   

5.
The topography of hilly landscapes modifies crop environment changing the fluxes of water and energy, increasing risk in these vulnerable agriculture systems, which could become more accentuated under climate change (drought, increased variability of rainfall). In order to quantify how wheat production in hilly terrain will be affected by future climate, a newly developed and calibrated micro-meteorological model for hilly terrain was linked to a crop growth simulation model to analyse impact scenarios for different European regions. Distributions of yield and growing length of rainfed winter wheat and durum wheat were generated as probabilistic indices from baseline and low (B2) and high (A2) emission climate scenarios provided from the Hadley Centre Regional Climate Model (HadRM3). We used site-specific terrain parameters for two sample catchments in Europe, ranging from humid temperate (southeast UK) to semi-arid Mediterranean (southern Italy). Results for baseline scenario show that UK winter wheat is mainly affected by annual differences in precipitation and yield distributions do not change with terrain, whilst in the southern Mediterranean climate yield variability is significantly related to a slope × elevation index. For future climate, our simulations confirm earlier predictions of yield increase in the UK, even under the high emission scenario. In the southern Mediterranean, yield reduction is significantly related to slope × elevation index increasing crop failure in drier elevated spots but not in wet years under baseline weather. In scenarios for the future, the likelihood of crop failure rises sharply to more than 60%, and even in wet years, yields are likely to decrease in elevated spots.  相似文献   

6.
Afforestation is usually thought as a good approach to mitigate impacts of warming over a region. This study presents an argument that afforestation may have bigger impacts than originally thought by previous studies. The study investigates the impacts of afforestation on future climate and extreme events in Nigeria, using a regional climate model (RegCM3), forced with global climate model simulations. The impacts of seven afforestation options on the near future (2031–2050, under A1B scenario) climate and the extreme events are investigated. RegCM3 replicates essential features in the present-day (1981–2000) climate and the associated extreme events, and adequately simulates the seasonal variations over the ecological zones in the country. However, the model simulates the seasonal climate better over the northern ecological zones than over the southern ecological zones. The simulated spatial distribution of the extreme events agrees well with the observation, though the magnitude of the simulated events is smaller than the observed. The study shows that afforestation in Nigeria could have both positive and negative future impacts on the climate change and extreme events in the country. While afforestation reduces the projected global warming and enhances rainfall over the afforested area (and over coastal zones), it enhances the warming and reduces the rainfall over the north-eastern part of the country. In addition, the afforestation induces more frequent occurrence of extreme rainfall events (flooding) over the coastal region and more frequent occurrence of heat waves and droughts over the semi-arid region. The positive and negative impacts of the afforestation are not limited to Nigeria; they extend to the neighboring countries. While afforestation lowers the warming and enhances rainfall over Benin Republic, it increases the warming and lowers the rainfall over Niger, Chad and Cameroon. The result of the study has important implication for the ongoing climate change mitigation and adaptation efforts in Nigeria.  相似文献   

7.
A two-way coupling simulation from the NCAR's regional climate model REGCM2 (called R-2 hereafter) and the SUCROS model for crop growth developed by the Wageningen Agricultural University,the Netherlands (both models,when in combination,denoted as R/S) are carried out on the interactions between crops and atmosphere in the Huang-Huai-Hai Plain in East China.Evidence suggests that the R/S simulations can depict pretty well the dynamic biology-based interactions between the factors,revealing reasonably both the day-to-day variations in leaf area index (LAI) and land surface physics therein,and particularly the improvement of the simulation,independently by use of the R-2,of summer precipitation and surface temperature in the research region.As a result,the present research is of significance to the further understanding of the interaction between the climate system and the terrestrial ecological systems.  相似文献   

8.
Feng Chen  Zhenghui Xie 《Climate Dynamics》2012,38(11-12):2291-2305
In this study, the CERES phenological growth and development functions were implemented into the regional climate model, RegCM3 to give a model denoted as RegCM3_CERES. This model was used to represent interactions between regional climate and crop growth processes. The effects of crop growth and development processes on regional climate were then studied based on two 20-year simulations over the East Asian monsoon area conducted using the original regional climate model RegCM3, and the coupled RegCM3_CERES model. The numerical experiments revealed that incorporating the crop growth and development processes into the regional climate model reduced the root mean squared error of the simulated precipitation by 2.2–10.7% over north China, and the simulated temperature by 5.5–30.9% over the monsoon region in eastern China. Comparison of the simulated results obtained using RegCM3_CERES and RegCM3 showed that the most significant changes associated with crop modeling were the changes in leaf area index which in turn modify the aspects of surface energy and water partitions and lead to moderate changes in surface temperature and, to some extent, rainfall. Further analysis revealed that a robust representation of seasonal changes in plant growth and developmental processes in the regional climate model changed the surface heat and moisture fluxes by modifying the vegetation characteristics, and that these differences in simulated surface fluxes resulted in different structures of the boundary layer and ultimately affected the convection. The variations in leaf area index and fractional vegetation cover changed the distribution of evapotranspiration and heat fluxes, which could potentially lead to anomalies in geopotential height, and consequently influenced the overlying atmospheric circulation. These changes would result in redistribution of the water and energy through advection. Nevertheless, there are significant uncertainties in modeling how monsoon dynamics responds to crop modeling and more research is needed.  相似文献   

9.
The potential effect of climate change on durum wheat in Tunisia is assessed using a simple crop simulation model and a climate projection for the 2071–2100 period, obtained from the Météo-France ARPEGE-Climate atmospheric model run under the IPCC (International Panel on Climate Change) scenario A1B. In the process-oriented crop model, phenology is estimated through thermal time. Water balance is calculated on a daily basis by means of a simple modelling of actual evapotranspiration involving reference evapotranspiration, crop coefficients and some basic soil characteristics. The impact of crop water deficit on yield is accounted for through the linear crop-water production function developed by the FAO (Food and Agriculture Organization of the United Nations). Two stations are chosen to study the climate change effect. They are representative of the main areas where cereals are grown in Tunisia: Jendouba in the northern region and Kairouan in the central region. In the future scenario, temperature systematically increases, whereas precipitation increases or decreases depending on the location and the period of the year. Mean annual precipitation declines in Jendouba and raises in Kairouan. Under climate change, the water conditions needed for sowing occur earlier and cycle lengths are reduced in both locations. Crop water deficit and the corresponding deficit in crop yield happen to be slightly lower in Kairouan; conversely, they become higher in Jendouba.  相似文献   

10.
Increased understanding of the substantial threat climate change poses to agriculture has not been met with a similarly improved understanding of how best to respond. Here we examine likely shifts in crop climates in Sub-Saharan Africa under climate change to 2050, and explore the implications for agricultural adaptation, with particular focus on identifying priorities in crop breeding and the conservation of crop genetic resources. We find that for three of Africa's primary cereal crops – maize, millet, and sorghum – expected changes in growing season temperature are considerable and dwarf changes projected for precipitation, with the warmest recent temperatures on average cooler than almost 9 out of 10 expected observations by 2050. For the “novel” crop climates currently unrepresented in each country but likely extant there in 2050, we identify current analogs across the continent. The majority of African countries will have novel climates over at least half of their current crop area by 2050. Of these countries, 75% will have novel climates with analogs in the current climate of at least five other countries, suggesting that international movement of germplasm will be necessary for adaptation. A more troubling set of countries – largely the hotter Sahelian countries – will have climates with few analogs for any crop. Finally, we identify countries, such as Sudan, Cameroon, and Nigeria, whose current crop areas are analogs to many future climates but that are poorly represented in major genebanks – promising locations in which to focus future genetic resource conservation efforts.  相似文献   

11.
This study examines the sensitivity of maize and sorghum crops to global warming in Botswana, a country with arid climatic conditions and shortfalls in locally produced grain. The vulnerability of the maize and sorghum crops to climate change were studied using crop simulation models while climate change scenarios were generated from Global Circulation Models. Simulated yields indicated that rain-fed crop production under the observed climate was a small fraction of what could be produced under optimal conditions. The gap was attributed to both physical (especially lack of rain) and socio-economic constraints. Using the southern African core climate change scenario, simulated yields declined by 36% in the case of maize and 31% for sorghum in the sand veldt region. Yield reductions from thehard veldt region were in the order of 10% for both maize and sorghum. The growing season became shorter, the average reduction in days in the sand veldt region being 5 and 8 days for maize and sorghum respectively, and correspondingly, 3 and 4 days over the hard veldt region. The food security option currently followed in Botswana was found to be a good adaptive strategy under a changed climate.  相似文献   

12.
Modeling the impacts of reforestation on future climate in West Africa   总被引:1,自引:0,他引:1  
This study investigates the potential impacts of reforestation in West Africa on the projected regional climate in the near two decades (2031–2050) under the SRES A1B scenario. A regional climate model (RegCM3) forced with a global circulation model (ECHAM5) simulations was used for the study. The study evaluates the capability of the regional model in simulating the present-day climate over West Africa, projects the future climate over the region and investigates impacts of seven hypothetical reforestation options on the projected future climate. Three of these reforestation options assume zonal reforestation over West Africa (i.e., over the Sahel, Savanna and Guinea), while the other four assume random reforestation over Nigeria. With the elevated GHGs (A1B scenario), a warmer and drier climate is projected over West Africa in 2031–2050. The maximum warming (+2.5°C) and drying (?2?mm?day?1) occur in the western part of the Sahel because the West Africa Monsoon (WAM) flow is stronger and deflects the cool moist air more eastward, thereby lowering the warming and drying in the eastern part. In the simulations, reforestation reduces the projected warming and drying over the reforested zones but increases them outside the zones because it influences the northward progression of WAM in summer. It reduces the speed of the flow by weakening the temperature gradient that drives the flow and by increasing the surface drag on the flow over the reforested zone. Hence, in summer, the reforestation delays the onset of monsoon flow in transporting cool moist air over the area located downwind of the reforested zone, consequently enhancing the projected warming and drying over the area. The impact of reforesting Nigeria is not limited to the country; while it lowers the warming over part of the country (and over Togo), it increases the warming over Chad and Cameroon. This study, therefore, suggests that using reforestation to mitigate the projected future climate change in West Africa could have both positive and negative impacts on the regional climate, reducing temperature in some places and increasing it in others. Hence, reforestation in West Africa requires a mutual agreement among the West African nations because the impacts of reforestation do not recognize political boundaries.  相似文献   

13.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   

14.
Projecting the impacts of climate change includes various uncertainties from physical, biophysical, and socioeconomic processes. Providing a more comprehensive impact projection that better represents the uncertainties is a priority research issue. We used an ensemble-based projection approach that accounts for the uncertainties in climate projections associated with general circulation models (GCMs) and biophysical and empirical parameter values in a crop model. We applied the approach to address the paddy rice yield change in Japan in the 2050s (2046–2065) and 2090s (2081–2100) relative to the 1990s (1981–2000). Seventeen climate projections, nine (eight) climate projections performed by seven (six) GCMs conditional on the Special Report on Emission Scenarios (SRES) A1B (A2), were included in this projection. In addition, 50 sets of biophysical and empirical parameter values of a large-scale process-based crop model for irrigated paddy rice were included to represent the uncertainties of crop parameter values. The planting windows, cultivation practices, and crop cultivars in the future were assumed to be the same as the level in the baseline period (1990s). The resulting probability density functions conditioned on SRES A1B and A2 indicate projected median yield changes of +?17.2% and +?26.9% in Hokkaido, the northern part of Japan, in the 2050s and 2090s with 90% probability intervals of (??5.2%, +?40.3%) and (+?6.3%, +?51.2%), relative to the 1990s mean yield, respectively. The corresponding values in Aichi, on the Pacific side of Western Japan, are 2.2% and ??0.8%, with 90% probability intervals of (??15.0%, +?14.9%) and (??33.4%, +?17.9%), respectively. We also provided geographical maps of the probability that the future 20-year mean yield will decrease and that the future standard deviation of yield for 20 years will increase. Finally, we investigated the relative contributions of the climate projection and crop parameter values to the uncertainty in projecting yield change in the 2090s. The choice of GCM yielded a relatively larger spread of projected yield changes than that of the other factors. The choice of crop parameter values could be more important than that of GCM in a specific prefecture.  相似文献   

15.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

16.
Through the analysis of ensembles of coupled model simulations and projections collected from CMIP3 and CMIP5, we demonstrate that a fundamental spatial scale limit might exist below which useful additional refinement of climate model predictions and projections may not be possible. That limit varies among climate variables and from region to region. We show that the uncertainty (noise) in surface temperature predictions (represented by the spread among an ensemble of global climate model simulations) generally exceeds the ensemble mean (signal) at horizontal scales below 1000 km throughout North America, implying poor predictability at those scales. More limited skill is shown for the predictability of regional precipitation. The ensemble spread in this case tends to exceed or equal the ensemble mean for scales below 2000 km. These findings highlight the challenges in predicting regionally specific future climate anomalies, especially for hydroclimatic impacts such as drought and wetness.  相似文献   

17.
Regional climate model simulations with RegCM3 were performed to investigate how future land-cover/land-use (LCLU) change in Montane Mainland Southeast Asia (MMSEA) could affect regional climate. Simulation land-surface parameterizations included present day and plausible 2050 land-covers, as well as two extreme deforestation simulations. In the simulations, the original land cover map of RegCM3, based on AVHRR 1992–93 observations, was replaced with one obtained from MODIS 2001 observations; and the model was set to work at two different spatial resolutions using the sub-grid feature of the land surface model: 27.79 km for the atmosphere and 9.26 km for the land surface. During validation, modeled precipitation closely matched observed precipitation over southern China, but underestimated precipitation in the Indochina Peninsula. The plausible 2050 LCLU simulation predicted little change in regional climate. However, an extreme irrigated crop parameterization caused precipitation to increase slightly in the Indochina Peninsula, decrease substantially in southeastern China, and increase significantly in the South China Sea. The extreme short-grass parameterization caused substantial precipitation decreases in MMSEA, but few changes elsewhere. These simulations indicate in order for significant climatological changes to occur, substantially more LCLU conversion is required than the 16 % change we incorporated into the plausible 2050 land-cover scenario.  相似文献   

18.
Estimates of impact of climate change on crop production could be biased depending upon the uncertainties in climate change scenarios, region of study, crop models used for impact assessment and the level of management. This study reports the results of a study where the impact of various climate change scenarios has been assessed on grain yields of irrigated rice with two popular crop simulation models- Ceres-Rice and ORYZA1N at different levels of N management. The results showed that the direct effect of climate change on rice crops in different agroclimatic regions in India would always be positive irrespective of the various uncertainties. Rice yields increased between 1.0 and 16.8% in pessimistic scenarios of climate change depending upon the level of management and model used. These increases were between 3.5 and 33.8% in optimistic scenarios. At current as well as improved level of management, southern and western parts of India which currently have relatively lower temperatures compared to northern and eastern regions, are likely to show greater sensitivity in rice yields under climate change. The response to climate change is small at low N management compared to optimal management. The magnitude of this impact can be biased upto 32% depending on the uncertainty in climate change scenario, level of management and crop model used. These conclusions are highly dependent on the specific thresholds of phenology and photosynthesis to change in temperature used in the models. Caution is needed in using the impact assessment results made with the average simulated grain yields and mean changes in climatic parameters.  相似文献   

19.
As one of the key grain-producing regions in China, the agricultural system in the North China Plain (NCP) is vulnerable to climate change due to its limited water resources and strong dependence on irrigation for crop production. Exploring the impacts of climate change on crop evapotranspiration (ET) is of importance for water management and agricultural sustainability. The VIP (Vegetation Interface Processes) process-based ecosystem model and WRF (Weather Research and Forecasting) modeling system are applied to quantify ET responses of a wheat-maize cropping system to climate change. The ensemble projections of six General Circulation Models (GCMs) under the B2 and A2 scenarios in the 2050s over the NCP are used to account for the uncertainty of the projections. The thermal time requirements (TTR) of crops are assumed to remain constant under air warming conditions. It is found that in this case the length of the crop growth period will be shortened, which will result in the reduction of crop water consumption and possible crop productivity loss. Spatially, the changes of ET during the growth periods (ETg) for wheat range from ?7 to 0 % with the average being ?1.5?±?1.2 % under the B2 scenario, and from ?8 to 2 % with the average being ?2.7?±?1.3 % under the A2 scenario/consistently, changes of ETg for maize are from ?10 to 8 %, with the average being ?0.4?±?4.9 %, under the B2 scenario and from ?8 to 8 %, with the average being ?1.2?±?4.1 %, under the A2 scenario. Numerical analysis is also done on the condition that the length of the crop growth periods remains stable under the warming condition via breeding new crop varieties. In this case, TTR will be higher and the crop water requirements will increase, with the enhancement of the productivity. It is suggested that the options for adaptation to climate change include no action and accepting crop loss associated with the reduction in ETg, or breeding new cultivars that would maintain or increase crop productivity and result in an increase in ETg. In the latter case, attention should be paid to developing improved water conservation techniques to help compensate for the increased ETg.  相似文献   

20.
CERES-Wheat模型在我国小麦区的应用效果及误差来源   总被引:11,自引:1,他引:10       下载免费PDF全文
气候模型与作物模型耦合是评价未来气候变化对作物生产影响的常用方法之一, 但当两者结合时, 存在着空间和时间尺度差异问题, 将作物模型升尺度到区域是解决该差异的一种方法。将CERES-Wheat模型升尺度进行区域模拟, 利用区域校准后的CERES-Wheat模型, 模拟了1981—2000年全国各网格小麦产量, 与同期农调队调查产量相比较, 以探讨CERES-Wheat模型在我国小麦区的模拟效果及误差来源。结果表明:全国小麦产量的区域模拟值与农调队调查产量的相对均方根误差为27.9%, 符合度为0.75, 全国59.2%的模拟网格相对均方根误差在30%以内, 其中相对均方根误差小于15%的占26.3%;各区的效果不同, 种植面积最大的小麦种植生态2区, 模拟效果最好。总体来说, CERES-Wheat的区域模拟, 可以反映产量变化规律, 能为宏观决策提供相应信息, 尤其是在主产区; 但区域模拟中还存在一系列误差, 今后还需进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号