首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

2.
Summary. Spectral analysis of eight marine gravity profiles and seven SEASAT profiles, combined with corresponding bathymetric data over the Northern Bay of Biscay origin, yield identical admittance functions for wavelengths greater than 120 km. the resulting admittance function has been interpreted in terms of an Airy model of compensation for wavelengths greater than 250 km and in terms of an elastic plate model of compensation for shorter wavelengths. the Airy model corresponds to a crustal thickness variation across the margin. the plate model with an elastic thickness of 8 km is associated with the regional compensation of a sedimentary load which was probably emplaced during and just after rifting.  相似文献   

3.
Magnetic and gravity data collected during a GLORIA survey of the Indus Fan provide new information on the earliest sea-floor spreading history of the Arabian Sea. A negative gravity anomaly correlates with the buried Laxmi Ridge. This ridge is interpreted here to be a sliver of continental crust adjacent to the oceancontinent transition which bounds thinned, probably intruded, transitional crust to the NE. The oldest sea-floor spreading anomaly is anomaly 28 (65-66 Ma), breakup occurring at the time of the Deccan Traps volcanic event. The earliest oceanic crust formed from two phases of rift propagation which accommodates the angular disparity between the E-W trending anomalies in the western Arabian Sea and the NE-SW trending western part of the Laxmi Ridge. Flow-line projection shows that the Laxmi ridge forms the conjugate structure to the northern Mascarene Plateau margin.  相似文献   

4.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

5.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

6.
We study the tectonic setting and lithospheric structure of the greater Barents Sea region by investigating its isostatic state and its gravity field. 3-D forward density modelling utilizing available information from seismic data and boreholes shows an apparent shift between the level of observed and modelled gravity anomalies. This difference cannot be solely explained by changes in crustal density. Furthermore, isostatic calculations show that the present crustal thickness of 35–37 km in the Eastern Barents Sea is greater than required to isostatically balance the deep basins of the area (>19 km). To isostatically compensate the missing masses from the thick crust and deep basins and to adequately explain the gravity field, high-density material (3300–3350 kg m−3) in the lithospheric mantle below the Eastern Barents Sea is needed. The distribution of mantle densities shows a regional division between the Western and Eastern Barents and Kara Seas. In addition, a band of high-densities is observed in the lower crust along the transition zone from the Eastern to Western Barents Sea. The distribution of high-density material in the crust and mantle suggests a connection to the Neoproterozoic Timanide orogen and argues against the presence of a Caledonian suture in the Eastern Barents Sea. Furthermore, the results indicate that the basins of the Western Barents Sea are mainly affected by rifting, while the Eastern Barents Sea basins are located on a stable continental platform.  相似文献   

7.
Summary. The Hatton Bank passive continental margin exhibits thick seaward dipping reflector sequences which consist of basalts extruded during rifting between Greenland and Rockall Plateau. Multichannel seismic reflection profiling across the margin reveals three reflector wedges with a maximum thickness near 7 km, extending from beneath the upper continental slope to the deep ocean basin. We present results of the velocity structure within the dipping reflector sequences at eight locations across the margin, interpreted by synthetic seismogram modelling a set of multichannel expanding spread profiles parallel to the margin. At the top of some reflector sequences, we observe a series of 100 m thick high- and low-velocity zones, which are interpreted as basalt flows alternating with sediments or weathered and rubble layers. At the profile locations, the base of the dipping reflectors correlates with P -wave velocities near 6.5 km s−1. However, elsewhere the reflectors appear to extend significantly deeper than the inferred 6.5 km s−1 velocity contour, indicating that the velocity structure may not be controlled solely by lithological boundaries but also by metamorphic effects. Shear-waves were observed on two lines, permitting the calculation of Poisson's ratio. The decrease in Poisson's ratio from 0.28 to near 0.25 in the upper 5 km of crust may also indicate the effect of metamorphism on seismic properties, or alternatively may be explained by crack closure under load.  相似文献   

8.
The rifting history of the Atlantic continental margin of Newfoundland is very complex and so far has been investigated at the crustal scale primarily with the use of 2-D seismic surveys. While informative, the results generated from these surveys cannot easily be interpreted in a regional sense due to their sparse sampling of the margin. A 3-D gravity inversion of the free air data over the Newfoundland margin allows us to generate a 3-D density anomaly model that can be compared with the seismic results and used to gain insight into regions lacking seismic coverage. Results of the gravity inversion show good correspondence with Moho depths from seismic results. A shallowing of the Moho to 12 km depth is resolved on the shelf at the northern edge of the Grand Banks, in a region poorly sampled by other methods. Comparisons between sediment thickness and crustal thickness show deviations from local isostatic compensation in locations which correlate with faults and rifting trends. Such insights must act as constraints for future palaeoreconstructions of North Atlantic rifting.  相似文献   

9.
Structure and early evolution of the Arabian Sea and East Somali Basin   总被引:5,自引:0,他引:5  
The Laxmi Ridge is a large-scale basement high buried beneath the sediments of the Indus Fan. The location of the ocean–continent transition (OCT) on this margin has previously been proposed at either the southern edge of the Laxmi Ridge or beyond it towards the India–Pakistan shelf. The former explains the margin-parallel Laxmi Basin as thinned continental crust, the latter as a failed rift of earlier seafloor spreading. To examine the structure of this margin, a reassessment of marine magnetic data has detailed seafloor-spreading magnetic anomalies prior to anomaly 24 in both the Arabian and East Somali basins. The previously identified anomaly 28 is not interpreted as a seafloor-spreading anomaly but as a magnetized basement feature adjacent to, and merging with, the ridge—the Laxmi Spur. New gravity models across the Laxmi Ridge and adjacent margin using ship and satellite data corroborate the existence of underplated crust beneath the Laxmi Ridge and Basin and the location of the OCT at the southern edge of the Ridge. The results are not compatible with the existence of a pre-anomaly 28 phase of seafloor spreading, although large-scale intrusions may be the origin of some of the basement features in the Laxmi Basin. The models also identify the Laxmi Spur as a low-density feature with a natural remanent magnetization (NRM) compatible with serpentinization. The Laxmi Ridge is mapped to the southeast, where it appears to terminate at a point coinciding with the appearance of E–W magnetic lineations and gravity anomalies at 15.5°N. Thereafter it becomes indistinct. This is interpreted as necessary in the reconstruction to the Mascarene Plateau to avoid continental overlap.  相似文献   

10.
Summary. Six gravity and bathymetry profiles perpendicular to the Kane fracture zone, each more than 300 km long, were gathered to study the variation in crustal structure in the vicinity of a major fracture zone and the gravitational edge effect at the contact between lithosphere of two different ages. A spectral analysis of the gravity and bathymetric series as a function of wavelength shows that the gravitational edge effect is only significant at the longest wavelengths. For remaining wavelengths the admittance, the ratio of the amplitude of the gravity anomaly to the amplitude of the bathymetry, is best explained by a model of isostasy in which topographic loads are partially supported by the flexural rigidity of an elastic plate, about 6 km in thickness. After subtracting the gravitational attraction of the bathymetry and its compensation, substantial isostatic anomalies remain. We interpret these anomalies as being caused by variations in crustal thickness which have little correlation with surface topography, except at very long wavelengths. The apparent crustal thickness varies by as much as a factor of 2, but there is no evidence indicating systematic thinning of the crust beneath the fracture zone. Our data do suggest that such density variations within the plate are also compensated by the isostatic response of an elastic plate but with very different effect from those at the surface. This indicates that there are two different modes of crustal formation with different gravity and topographic signatures: effusive volcanism which loads the surface of the elastic plate producing both topographic relief and coherent gravity anomalies, and intrusive volcanism or underplating producing gravity anomalies but little topographic relief.  相似文献   

11.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

12.
The Canary Islands swell: a coherence analysis of bathymetry and gravity   总被引:2,自引:0,他引:2  
The Canary Archipelago is an intraplate volcanic chain, located near the West African continental margin, emplaced on old oceanic lithosphere of Jurassic age, with an extended volcanic activity since Middle Miocene. The adjacent seafloor does not show the broad oceanic swell usually observed in hotspot-generated oceanic islands. However, the observation of a noticeable depth anomaly in the basement west of the Canaries might indicate that the swell is masked by a thick sedimentary cover and the influence of the Canarian volcanism. We use a spectral approach, based on coherence analysis, to determine the swell and its compensation mechanism. The coherence between gravity and topography indicates that the swell is caused by a subsurface load correlated with the surface volcanic load. The residual gravity/geoid anomaly indicates that the subsurface load extends 600 km SSW and 800 km N and NNE of the islands. We used computed depth anomalies from available deep seismic profiles to constrain the extent and amplitude of the basement uplift caused by a relatively low-density anomaly within the lithospheric mantle, and coherence analysis to constrain the elastic thickness of the lithosphere ( Te ) and the compensation depth of the swell. Depth anomalies and coherence are well simulated with Te =28–36 km, compensation depth of 40–65 km, and a negative density contrast within the lithosphere of ∼33 kg m−3. The density contrast corresponds to a temperature increment of ∼325°C, which we interpret to be partially maintained by a low-viscosity convective layer in the lowermost lithosphere, and which probably involves the shallower parts of the asthenosphere. This interpretation does not require a significant rejuvenation of the mechanical properties of the lithosphere.  相似文献   

13.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

14.
Summary. A new Bouguer anomaly map of India and its generalized interpretation is presented in this paper. Bouguer anomalies in India show good correlation with the geology and tectonics. Isostatic anomalies in India are primarily geologic anomalies caused by intracrustal inhomogeneities. For example, the negative isostatic anomalies in southern India arise from large thicknesses of granitic bodies in the upper crust and the positive anomaly over the Himalaya may be attributed to a possible thickening of the basalt layer in the lower crust. The gravity data suggest that an overall isostatic equilibrium generally prevails in India and the Himalayan region. Crustal thickness estimates from DSS data in India are comparable to the values obtained from gravity data based on the Ahy's concept of isostatic compensation.  相似文献   

15.
The tectonic subsidence and gravity anomalies in the Malay and Penyu Basins, offshore Peninsular Malaysia, were analysed to determine the isostatic compensation mechanism in order to investigate their origin. These continental extensional basins contain up to 14  km of sediment fill which implies that the crust had been thinned significantly during basin development. Our results suggest, however, that the tectonic subsidence in the basins cannot be explained simply by crustal thinning and Airy isostatic compensation.
The Malay and Penyu Basins are characterized by broad negative free-air gravity anomalies of between −20 and −30  mGal. To determine the cause of the anomaly, we modelled four gravity profiles across the basins using a method that combines two-dimensional flexural backstripping and gravity modelling techniques. We assumed a model of uniform lithospheric stretching and Airy isostasy in the analysis of tectonic subsidence. Our study shows that the basins are probably underlain by relatively thinned crust, indicating that some form of crustal stretching was involved. To explain the observed gravity anomalies, however, the Moho depth that we calculated based on the free-air gravity data is about 25% deeper than the Moho predicted by assuming Airy isostasy (Backstrip Moho). This suggests that the Airy model overestimates the compensation and that the basins are probably undercompensated isostatically. In other words, there is an extra amount of tectonic subsidence that is not compensated by crustal thinning, which has resulted in the discrepancy between the gravity-derived Moho and the Backstrip Moho. We attribute this uncompensated or anomalous tectonic subsidence to thin-skinned crustal extension that did not involve the mantle lithosphere. The Malay and Penyu Basins are interpreted therefore as basins that formed by a combination of whole-lithosphere stretching and thin-skinned crustal extension.  相似文献   

16.
A two-layer lithospheric stretching model that includes the effects of decompression melting was used to estimate the deformation and thermal evolution of the Queen Charlotte Basin, British Columbia. The basin contains up to 6 km of Tertiary fill and is postulated to have been formed during a transtensional stage of Cenozoic plate motion between the Pacific and North American plates. Several models of basin formation have been proposed to explain the sediment distribution, contemporaneous volcanism and high present-day heat flow. We used bathymetry, Tertiary sediment thickness and crustal thickness to calculate the amount of stretching in the crust and lower lithosphere, and the volume of melt generated during advection of mantle rocks. A second set of calculations traced the thermal evolution of the sediments and lithosphere, and we show maps of estimated present-day heat flow and sediment maturity. This study differs significantly from previous work in the use of gridded data that provide coverage over a large region and permit lateral variations in lithospheric deformation and thermal properties to be clearly defined, a difficult quest in studies based on single-point or profile data. In addition, the use of crustal thickness, derived from a regional interpretation of gravity data and constrained by seismic refraction results, as an input allows reliable estimates of extension to be made despite recent deformation of sedimentary strata in Hecate Strait. We present results for a model which used a prerift crustal thickness of ≈34 km and a short rifting period from 25 to 20 Ma. This model infers that significant thinning occurred beneath south-western Hecate Strait and southern Queen Charlotte Sound, and several kilometres of igneous crust were added at these sites, without requiring elevated asthenospheric temperatures prior to extension. Net lithospheric extension is surprisingly uniform within the basin and averages 76%, or ≈50 km, across the margin. This amount is consistent with other estimates of extension and may provide information useful in refining models of plate motion along this margin.  相似文献   

17.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

18.
刘建华 《极地研究》1992,4(1):23-28
重力资料结合磁性体埋深计算和地震折射资料的分析 ,表明在南极半岛和东南极克拉通之间的菲尔希内尔和罗纳冰架之下存在一减薄的地壳。推测该区地壳的减薄主要由南极半岛和东南极克拉通之间的近东西向拉张作用所造成 ,该作用很可能发生在陆架盆地发展的早期。  相似文献   

19.
Summary. This paper concerns the calculation and analysis of admittance functions from large and uniform data sets of gravity and topography in four regions of the northern and western Pacific Ocean. The purpose is to separate and describe possible differences in isostatic compensation between several 'type' regions of oceanic crust: a mid-ocean ridge (Juan de Fuca), a mid-plate seamount chain (Hawaiian Ridge), fracture zone topography on old crust (north of Hawaii) and a marginal basin (Philippine Sea). Results suggest that there are significant differences in the degree to which long wavelength topography has been compensated which can be distinguished between regions. These differences are set in the perspective of three simple compensation mechanisms. Two of these consider local Airy models in which raised topography is compensated at depth either by crustal roots or low density mantle. A third considers the effects of an elastic plate of variable thickness supporting crustal variations. Conclusions are that: (a) a thick plate possibly in excess of 30 km supports the Hawaiian Ridge; (b) a much thinner plate of 5 to 15 km existed when the fracture zone topography was formed; (c) the Juan de Fuca Ridge is compensated either regionally by a plate 5 to 10 km thick or locally by sub-crustal low densities at depths of 15 to 20 km; and (d) the Philippine Sea shows no evidence for regional support: ridges are compensated locally by differences in crustal thickness whereas the basins are underlain by density variations at depths comparable to those of the much younger Juan de Fuca Ridge. The major difference between admittance functions for the Philippine Sea and comparably aged regions of the north Pacific Ocean adds further new evidence of possible evolutionary differences between it and normal ocean basins.  相似文献   

20.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号