首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of carbon capture and storage, deep underground injection of CO2 induces the geomechanical changes within and around the injection zone and their impact on CO2 storage security should be evaluated. In this study, we conduct coupled multiphase fluid flow and geomechanical modeling to investigate such geomechanical changes, focusing on probabilistic analysis of injection-induced fracture reactivation (such as shear slip) that could lead to enhanced permeability and CO2 migration across otherwise low-permeability caprock formations. Fracture reactivation in terms of shear slip was analyzed by implicitly considering the fracture orientations generated using the Latin hypercube sampling method, in one case using published fracture statistics from a CO2 storage site. The analysis was conducted by a coupled multiphase fluid flow and geomechanical simulation to first calculate the three-dimensional stress evolution during a hypothetical CO2 injection operation and then evaluate the probability of shear slip considering the statistical fracture distribution and a Coulomb failure analysis. We evaluate the probability of shear slip at different points within the injection zone and in the caprock just above the injection zone and relate this to the potential for opening of new flow paths through the caprock. Our analysis showed that a reverse faulting stress field would be most favorable for avoiding fracture shear reactivation, but site-specific analyses will be required because of strong dependency of the local stress field and fracture orientations.  相似文献   

2.
Reconstruction of geological structures has the potential to provide additional insight into the effect of the depositional history on the current-day geomechanical and hydro-geologic state. Accurate modeling of the reconstruction process is, however, complex, necessitating advanced procedures for the prediction of fault formation and evolution within fully coupled geomechanical, fluid flow and temperature fields. In this paper, a 3-D computational approach is presented that is able to forward model complex structural evolution with multiple intersecting faults that exhibit large relative movement within a coupled geomechanical/flow environment. The approach adopts the Lagrangian method, complemented by robust and efficient automated adaptive meshing techniques, an elasto-plastic constitutive model based on critical state concepts, and global energy dissipation regularized by inclusion of fracture energy in the equations governing state variable evolution. The proposed model is validated by comparison of 2-D plane strain and 3-D thin-slice predictions of a bench-scale experiment, and then applied to two conceptual coupled geomechanical/fluid flow field-scale benchmarks.  相似文献   

3.
虞松  朱维申  张云鹏 《岩土力学》2015,36(2):555-560
以非连续变形分析方法(DDA)为基础并采用稳态流体计算方法将二者结合进行裂隙岩体流-固耦合分析。利用DDA方法生成裂隙岩体模型,在此基础上采用矩阵搜索等方法形成新的裂隙水通网络模型。采用稳态迭代算法和立方定律求得裂隙水压力,并把裂隙水压力作为线载荷施加到块体边界,在DDA算法中每个迭代步完成后更新裂隙开度和水压值,与DDA算法结合研究裂隙水与块体之间相互作用关系。利用以上裂隙岩体流-固耦合计算方法研究了某水封油库开挖和运行过程洞室围岩流量和密封性,为该工程预测水封效果提供了有益的主要依据,也是国内首次采用DDA方法做大型工程的流-固耦合模型分析。  相似文献   

4.
We present a discussion of the state-of-the-art on the use of discrete fracture networks (DFNs) for modelling geometrical characteristics, geomechanical evolution and hydromechanical (HM) behaviour of natural fracture networks in rock. The DFN models considered include those based on geological mapping, stochastic generation and geomechanical simulation. Different types of continuum, discontinuum and hybrid geomechanical models that integrate DFN information are summarised. Numerical studies aiming at investigating geomechanical effects on fluid flow in DFNs are reviewed. The paper finally provides recommendations for advancing the modelling of coupled HM processes in fractured rocks through more physically-based DFN generation and geomechanical simulation.  相似文献   

5.
When fluid flows in porous media under subsurface conditions, significant deformation can occur. Such deformation is dependent on structural and phase characteristics. In this paper, we investigate the effect of multiphase flow on the deformation of porous media at the pore scale by implementing a strongly coupled partitioned solver discretized with finite volume (FV) technique. Specifically, the role of capillary forces on grain deformation in porous media is investigated. The fluid and solid subdomains are meshed using unstructured independent grids. The model is applied for solving multiphase coupled equations and is capable of capturing pore scale physics during primary drainage by solving the Navier-Stokes equation and advecting fluid indicator function using volume of fluid (VOF) while the fluid is interacting with a nonlinear elastic solid matrix. The convergence of the coupled solver is accelerated by Aitken underrelaxation. We also reproduce geomechanical stress conditions, at the pore scale, by applying uniaxial stress on the solid while simultaneously solving the multiphase fluid-solid interaction problem to investigate the effect of external stress on fluid occupancy, velocity-field distribution, and relative permeability. We observe that the solid matrix exhibits elasto-capillary behavior during the drainage sequence. Relative permeability endpoints are shifted on the basis of the external stress exerted.  相似文献   

6.
Flowback analysis recently has been considered as a potential tool for assessing induced fractures through corresponding pressure analyses and rate transient analysis. In this paper, we study fracture closure mechanisms during the flowback of fracturing fluid after hydraulic fracturing treatments. Although it is known that flowback can be significantly affected by the geometry of the fractures and closure stress, there has not been any effort to understand the problem from the geomechanical point of view; rather, available studies assume that a fracture closes uniformly with constant fracture compressibility. The coupled geomechanics and fluid flow model presented in this paper help to elucidate how geostresses may affect fracturing fluid recovery under different conditions. We perform a scaling analysis to formulate the occurrence of different fracture closure modes and then use numerical analyses to verify our scaling parameters. The factors governing the flowback process include the mechanical and petrophysical properties of the rock as well as preexisting discontinuities such as natural fractures. Three different closure modes for fracture networks are described and numerically verified. The occurrence of each mode can dramatically affect fracturing fluid recovery. The role of fluid leakoff into the formation, fractures conductivity, and drawdown strategy are examined for each fracture closure scenario.  相似文献   

7.
岩体裂隙系统渗流场与应力场耦合模型   总被引:15,自引:0,他引:15  
岩体系统具有复杂的结构。一般认为,岩体系统是非均质各向异性不连续的多相介质体系。当岩体以裂隙为主,且其分布较密集时,可将岩体系统看作等效连续多相介质体系。本文运用等效连续介质理论,提出了两种岩体裂隙系统渗流场与应力场耦合模型:一是以渗透水压力与隙变形关系、应力与渗透系统数关系为基础,建立渗透系数张量计算公式,进而建立等效效连续介质渗流为数学模型。以裂隙岩体应变张量分析为基础,建立裂隙岩体效应力张量  相似文献   

8.
The pressure variations during the production of petroleum reservoir induce stress changes in and around the reservoir. Such changes of the stress state can induce marked deformation of geological structures for stress sensitive reservoirs as chalk or unconsolidated sand reservoirs. The compaction of those reservoirs during depletion affects the pressure field and so the reservoir productivity. Therefore, the evaluation of the geomechanical effects requires to solve in a coupling way the geomechanical problem and the reservoir multiphase fluid flow problem. In this paper, we formulate the coupled geomechanical‐reservoir problem as a non‐linear fixed point problem and improve the resolution of the coupling problem by comparing in terms of robustness and convergence different algorithms. We study two accelerated algorithms which are much more robust and faster than the conventional staggered algorithm and we conclude that they should be used for the iterative resolution of coupled reservoir‐geomechanical problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究   总被引:3,自引:0,他引:3  
为揭示在渗流-化学溶解耦合作用下单裂隙渗透特性的变化规律,建立了描述二维渗流-化学溶解耦合作用的偏微分方程组,并利用COMSOL Multiphysics软件成功地求解该方程组。首先,模拟了文献[1]中的盐岩渗流-溶解耦合渗流试验结果,数值模拟结果与试验结果较为吻合,验证了数学模型的正确性和有效性。然后,利用分形理论生成了一个粗糙的裂隙面数字模型,着重分析了二维石灰岩粗糙裂隙面在水流、矿物溶解和输运过程中其渗透特性的变化规律。数值分析显示,(1)溶质浓度对裂隙面的溶解具有非常重要的作用,从而水流进口端的溶解厚度比出口端大得多。(2)裂隙的整体渗透性在初始时刻增加较慢,随着裂隙开度的增大和贯通,溶解速度会逐渐增大,是一个加速的过程。  相似文献   

10.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.  相似文献   

12.
基于GMS的三维TOUGH2模型及模拟   总被引:1,自引:0,他引:1  
GMS和TOUGH2均是应用广泛的地下流动系统数值模拟软件,其中,GMS界面友好,功能强大;而TOUGH2虽具有强大的数值计算能力,但缺乏友好的可视化前后处理界面。本文借助GMS强大的前处理能力,基于概念模型建立了三维复杂模型,把GMS/MODFLOW三维数值模型(包括网格数据、岩性数据、初始和边界数据等)转化为TOUGH2数值模型进行数值计算。通过两个计算实例(含水层水平没有起伏和有起伏)对比分析了GMS/MODFLOW和TOUGH2计算结果的差异。结果显示,该方法可以快速地建立刻画复杂地质条件的TOUGH2模型,计算结果与GMS/MODFLOW差异很小,说明两个软件均有很高的可信度;同时,该方法发挥了两个软件各自的优势,为进行更为复杂的多相流动数值模拟提供了可行性。  相似文献   

13.
Fractured rock has often been conceptualized as a dual-continuum system for many practical applications. This study proposes a systematic approach to deal with multiphase flow in a dual-continuum system. Considering that fluid flow occurs in pore volumes (including fracture apertures), we first develop a so-called pore-space conservation equation for deformed fractured rock and then combine this equation with fluid mass balance to derive governing equations for multiphase flow associated with rock deformation. Constitutive relationships are also presented for describing stress dependence of hydraulic properties and effective mechanical parameters for bulk rock body (as a function of the corresponding parameters for fracture and matrix continua). Finally, we applied the developed approach to a CO2 geological sequestration problem to demonstrate the usefulness of the approach.  相似文献   

14.
A coupled hydro-geomechanical modelling environment, developed to evaluate the coupled responses of fluid flow in deforming discontinuous media, is described. A staggered computational framework is presented, where the two simulations tools, HYDRO and DDA, communicate via the mapping of an equivalent porosity (and related permeabilities) from the rock system to the fluid phase and an inverse mapping of the pressure field. Several algorithmic and modelling issues are discussed, in particular the computational procedure to map the current geometry of the discontinuous rock blocks assembly into an equivalent porosity (and permeability) field. A generic, geometrically simple, overpressured reservoir/seal system is analysed for illustration. Further examples investigate discontinuous, fractured configurations in flexure causing a degree of spatial variability in the induced stresses. Model predictions show that the combination of hydraulic and mechanical loads causes a dilational opening of some pre-existing fractures and closure of others, with strong localisation of the modified flow pattern along wider fracture openings.  相似文献   

15.
This paper presents simulation results related to coupled thermal–hydraulic–mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy’s used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS–rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host–rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to provide an adequate increase in confining stress on the tunnel wall, leading to a stabilization of any failure that may occur during the tunnel excavation. Finally, we describe the application of a possible approach for linking THM processes with chemistry, focusing on the evolution of primary and secondary swelling, in which the secondary swelling is caused by changes in ionic concentration, which in turn is evaluated using a transport simulation model.  相似文献   

16.
在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开发了THM模拟器TOUGH2Biot。该模拟器中热和水动力过程是全耦合,力学过程是部分耦合。通过与解析解的对比,验证了其正确性。基于鄂尔多斯盆地CCS示范工程,采用TOUGH2Biot研究了CO2注入地层后的THM响应。结果显示CO2的注入引起流体压力急剧增加,地层有效应力减小,地表隆起,隆起大小在几十个厘米,同时孔渗增加,利于CO2注入引起的压力上升向外消散。CO2注入最有可能导致剪切破坏的位置位于最大速率注入点上部盖层,其次为靠近地表的位置。  相似文献   

17.
Modeling hydraulic fracturing in the presence of a natural fracture network is a challenging task, owing to the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and existing natural interfaces. Understanding these complex interactions through numerical modeling is critical to the design of optimum stimulation strategies. In this paper, we present an explicitly integrated, fully coupled discrete‐finite element approach for the simulation of hydraulic fracturing in arbitrary fracture networks. The individual physical processes involved in hydraulic fracturing are identified and addressed as separate modules: a finite element approach for geomechanics in the rock matrix, a finite volume approach for resolving hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive remeshing module. The model is verified against the Khristianovich–Geertsma–DeKlerk closed‐form solution for the propagation of a single hydraulic fracture and validated against laboratory testing results on the interaction between a propagating hydraulic fracture and an existing fracture. Preliminary results of simulating hydraulic fracturing in a natural fracture system consisting of multiple fractures are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a new, fully-coupled, hydro-mechanical (HM) formulation for a finite-discrete element method computer code. In the newly-developed, hydraulic solver, fluid flow is assumed to occur through the same triangular mesh used for the mechanical calculations. The flow of a viscous, compressible fluid is explicitly solved based on a cubic law approximation. The implementation is verified against closed-form solutions for several flow problems. The approach is then applied to a field-scale simulation of fluid injection in a jointed, porous rock mass. Results show that the proposed method can be used to obtain unique geomechanical insights into coupled HM phenomena.  相似文献   

19.
We present a fracture-only reservoir simulator for multiphase flow: the fracture geometry is modeled explicitly, while fluid movement between fracture and matrix is accommodated using empirical transfer functions. This is a hybrid between discrete fracture discrete matrix modeling where both the fracture and matrix are gridded and dual-porosity or dual-permeability simulation where both fracture and matrix continua are upscaled. The advantage of this approach is that the complex fracture geometry that controls the main flow paths is retained. The use of transfer functions, however, simplifies meshing and makes the simulation method considerably more efficient than discrete fracture discrete matrix models. The transfer functions accommodate capillary- and gravity-mediated flow between fracture and matrix and have been shown to be accurate for simple fracture geometries, capturing both the early- and late-time average behavior. We verify our simulator by comparing its predictions with simulation results where the fracture and matrix are explicitly modeled. We then show the utility of the approach by simulating multiphase flow in a geologically realistic fracture network. Waterflooding runs reveal the fraction of the fracture–matrix interface area that is infiltrated by water so that matrix imbibition can occur. The evolving fraction of the fracture–matrix interface area turns out to be an important characteristic of any particular fracture system to be used as a scaling parameter for capillary driven fracture–matrix transfer.  相似文献   

20.
离散裂隙渗流方法与裂隙化渗透介质建模   总被引:4,自引:1,他引:4  
流体渗流模拟的连续介质方法通常适用于多孔地质体,并不一定适用于裂隙岩体,由于裂隙分布及其特征与孔隙差异较大。若流体渗流主要受裂隙的控制,对于一定尺寸的裂隙岩体,多孔介质假设则较难刻划裂隙岩体的渗流特征。离散裂隙渗流方法不但可直接用于模拟裂隙岩体非均质性和各向异性等渗流特征,而且可用其确定所研究的裂隙岩体典型单元体及其水力传导(渗透)张量大小。主要讨论了以下问题:(1)饱和裂隙介质中一般的离散流体渗流模拟;(2)裂隙岩体中的REV(典型单元体)及其水力传导(渗透)张量的确定;(3)利用离散裂隙网络流体渗流模型研究裂隙方向几何参数对水力传导系数和REV的影响;(4)在二维和三维离散裂隙流体渗流模型中对区域大裂隙和局部小裂隙的处理方法。调查结果显示离散裂隙流体渗流数学模型可用来评价不同尺度上的裂隙岩体的水力特征,以及裂隙方向对裂隙化岩体的水力特征有着不可忽视的影响。同时,局部小裂隙、区域大裂隙应当区别对待,以便据其所起的作用及水力特征,建立裂隙化岩体相应的流体渗流模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号