首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, separation between the geoid and the quasigeoid was calculated using ground gravity data and the data extracted from two Global Geopotential Models (GGMs). The calculated results were compared together. To do so, the authors used the terrestrial gravity data in a vast region of Iran, comprising 8,245 stations which are kindly put in our disposal by the National Cartographic Center of Iran, as well as two GGMs, namely EGM96 and EGM2008 for comparison. The calculation of the separation for GGMs was performed by iteration method. The results showed that the geoid–quasigeoid separations obtained from the terrestrial data versus the orthometric heights are nonlinear in mountainous areas, whereas they are almost linear in flat regions due to decreasing the values of the topographic potential of the masses between the earth surface and the geoid. On the other hand, in case of GGMs, a positive correlation was observed between the separations and the orthometric heights in both mountainous and flat areas. As the difference between the separations extracted by two methods in mountainous areas—especially in the regions with ragged topography—differs strongly, it is recommended to use the dense gravity and height networks for accurate determination of the geoid–quasigeoid separation in these regions. Finally, we can conclude that the mean values of separation by two global geopotential models (EGM96 and EGM2008) are 21.87 and 21.23 cm, respectively, values which did not differ strongly, whereas this mean value obtained from ground gravity data is 16.10 cm, which differs from the GGMs’ results with approximately 5 cm.  相似文献   

2.
A new gravimetric geoid is computed for South Spain and the Gibraltar Strait area. This geoid is located just in the junction between two tectonic plates (Euro-Asiatic and African plates) and in the junction of two gravimetric geoids: IGG2005 (the Iberian Gravimetric Geoid obtained in 2005) and MORGEO (the MORoccan GEOid). IGG2005 is the Iberian geoid and MORGEO is the Moroccan geoid, both geoids have been previously obtained. The new geoid is the gravimetric geoid solution that connects the two above-mentioned geoids, getting a more accurate and reliable picture of this area than the other previous geoids. The method used is the Stokes integral in convolution form, which shows to be an efficient method to reach the proposed objective. The terrain correction and the indirect effect have been taken into account. The new geoid is obtained as a regular grid (with a mesh size of 1.5′ × 1.5′) in the GRS80 reference system, covering the study area from 34° to 40° of latitude and from −8° to 0° of longitude. This gravimetric geoid and the previous geoids: IGG2005 and MORGEO; are compared to the geoid undulations derived at the validation points located on the study area (four GPS/levelling points measured on Morocco and five points of the European vertical reference network (EUVN) measured on Iberia). As it is expected, the new geoid is a more precise and reliable model, fitting the geoidal heights of these validation points with more accuracy than the other previous geoids. This new model will be useful for orthometric height determination by GPS in the mountains and remote areas, where levelling has many logistic problems. Also, it can be interesting for other geophysical purposes different to the height measurements, because it can provide a constraint for the density distribution, the thermal state of Lithosphere and the viscosity in the mantle. Such details can be inferred from a geoid model and the seismic velocity structure.  相似文献   

3.
The Fast Fourier Transformation (FFT) has become a routine mathematical tool for the refinement of the Earth's gravity field, such as the computation of precise gravimetric geoid and terrain corrections, particularly over a large area. This paper presents ideas and methodologies to evaluate the accuracy of geoid undulation computations using FFT. A global geopotential model is used as a ‘ground truth’ gravity field model to assess the geoid determination precision by using FFT technique. It is demonstrated that special considerations must be given for a high precision FFT gravimetric geoid determination. A maximum of a few decimetres error could be introduced by the FFT algorithm if the gravity anomalies are not long wavelength filtered and/or no zero padding is applied.  相似文献   

4.
J. Ebbing  O. Olesen 《Tectonophysics》2005,411(1-4):73-87
We investigate the Scandes mountain range by analysing the gravity field, the geoid heights and the degree of isostatic compensation of the lithosphere. Topographically, the Scandes mountain range can be divided in the Northern and Southern Scandes. Comparisons between the present topographic expression and the gravity field and the geoid show that the axis of highest elevation in the Northern Scandes is shifted eastwards compared to the minimum of the Bouguer anomaly, while the two coincide perfectly in the Southern Scandes. Geoid heights reduced by the effect of topographic masses show a large-scale minimum in the Northern Scandes, but no anomaly in the Southern Scandes.Regional, flexural isostatic calculations yield a flexural rigidity of D = 1023 Nm for the lithosphere of the Southern Scandes and the isostatic gravity and geoid residuals point to additional isostatic support by low-density rocks below the Moho. On the other side, for the lithosphere in the Northern Scandes no significant flexural rigidity can be resolved. Here, the Bouguer anomaly is best modelled with a small flexural rigidity, indicating nearly Airy isostatic behaviour. Local subsurface loading and horizontal tectonic forces overprint the isostatic compensations and increase the tectonic complexity of the Northern Scandes. These distinctive features of the Scandes cannot be explained by currently existing models of the present and Neogene uplift and the isostatic mechanism of the Scandes.  相似文献   

5.
A local geoid solution for the northern part of Greece is presented based on a recent processing of newly available gravity data in the area 40.25 ≤ /o ≤ 41.00, 22.5 ≤λ ≤ 24.25. The derived gravimetric geoid heights are compared with geoid heights computed at recently measured GPS/ leveling benchmarks. A 4-parameter transformation model is applied to the differences between the two aforementioned geoid height sets, and a discussion is given on the current state of the leveling datum in the test area and the Greek territory. Regional and local transformation parameters are computed and some numerical tests are performed. A common adjustment of gravimetric geoid heights and corresponding GPS/leveling heights will be carried out in another study following an integrated procedure in order to study problems arising from the combination of different height data sets for geoid determination. Finally, some conclusions are drawn on the problems related to the optimization of a local geoid solution.  相似文献   

6.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

7.
The Global Geopotential Models (GGMs) are very significant because of their usefulness in determination of the parameters like geoidal undulations, height anomalies, gravity anomalies, and so on. In this paper, first, we review the calculation of such parameters and then present the GGMCalc software, which is prepared in Fortran 95 under GNU/Linux Operating System. This software is capable of using the files presented by the International Center for Global Earth Models (ICGEM) directly without need to apply any changes on them. The software is completely structural and user friendly and could be used conveniently for academic purposes.  相似文献   

8.
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.  相似文献   

9.
对近年升空的CHAMP和GRACE和将于2007年升空的GOCE卫星在测定地球重力场方面的技术特点和初步成果进行了回顾、比较和评估。并对它们今后在静态和动态的地球重力场构模方面可能的进展作一展望。现在只用一颗重力卫星的轨道摄动数据,就可以以前所未有的可靠性和精确性来求定地球重力场的长波和部分中波。如CHAMP重力卫星的33个月数据所求定的地球重力场模型,相对于曾利用多颗卫星资料所推算的GR1M5 S1重力场模型,在长波方面的精度和可靠性都有很大改善。而GRACE重力卫星的 110天数据所导出成果的空间分辨率,又优于CHAMP的33个月的数据成果。GRACE卫星还有一个重要任务,就是测定重力场非潮汐的短期性或准实时的变化。还介绍了新发表的一个联合地球重力场模型EIGEN CG03C, 360完全阶次,分辨率约30′。CG03C同CHAMP/GRACE以前的重力场模型比较,在400 km波长的精度方面改善了一个量级,大地水准面的精度改善了3 cm,重力异常的精度改善了0.4 mgal。  相似文献   

10.
The seismic data incorporated in global Moho models are sparse and therefore the interpolation of global Moho depths on a local area may give unrealistic results, especially in regions without adequate seismic information. Gravity inversion is a useful tool that can be used to determine Moho depths in the mentioned regions. This paper describes an interactive way of local Moho depth determination using the gravity inversion method constrained with available seismic data. Before applying inversion algorithms, the Bouguer gravity data is filtered in various stages that reduce the potential bias usually expected in Moho depth determination using gravity methods with constant density contrast assumption. A test area with reliable seismic data is used to validate the results of Moho computation, and subsequently the same computation procedure is applied to the Sri Lankan region. The results of the test area are in better agreement with seismically determined Moho depths than those obtained by global Moho models. In the Sri Lankan region, Moho determination reveals a fairly uniform thin crust of average thickness around 20 km. The overall result suggests that our gravity inversion method is robust and may be suitable for local Moho determination in virgin regions, especially those without sufficient seismic data.  相似文献   

11.
Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. The Eastern offshore was taken up for analysis using Geosat Exact Repeat Mission (ERM) altimeter data. A methodology is developed to use altimeter data as an aid to offshore hydrocarbon exploration. Processing of altimeter data involves corrections for various atmospheric and oceanographic effects, stacking and averaging of repeat passes, cross-over correction, removal of deeper earth and bathymetric effects, spectral analysis and conversion into free-air gravity anomaly. The final processed results were derived for Eastern offshore in the form of prospecting geoid and gravity anomaly maps and their spectral components. The highs and lows observed in those maps were derived in terms of a number of prominent megastructures e.g., gravity linears, 85°E and 90°E ridges, the Andaman trench complex etc. Satellite-derived gravity profiles along 12°N latitude match well with the existing structures.  相似文献   

12.
大地测量在研究青藏地壳运动及其机制中的作用   总被引:2,自引:0,他引:2  
基于对GPS和重力测量数据的分析,扼要地介绍了重力与内部构造关系,大地水准面的场源与其动力效应等方面的研究内容和方法。总结了利用重力与形变资料研究青藏地区的现代地壳运动及其动力机制的研究结果。  相似文献   

13.
This paper looks at the relation between the time-averaged level of the sea surface and a gravimertic geoid, as determined in coastal areas. Measurements in local regions can now be accurate enough to demonstrate that the geoid and mean sea level are not even parallel to each other, let alone identical. The accuracy and pattern structure of surface gravity data in some shelf seas is comparable with those on land, so that a marine geoid can be derived from surface data without using satellite altimetry. The geodetic objective is then to combine the two to determine sea surface topography. In principle, gravimetric studies provide the absolute datum so that local oceanographic models on the shelf can be combined with sea surface topography models related to the global ocean circulation. In contrast, sea surface topography information near deep ocean coasts must come from external sources and satellite altimetry used to give the gravity data needed to offset the less good coverage by ship-borne gravimetry.Marine Bouguer anomalies enable two specific problems of gravity anomaly patterns near the continent ocean transition to be overcome. The necessary extension of Stokes' condensation reduction is developed and illustrated along a north-south profile from the Mediterranean across the Cote d'Azur. The effect on gravity of deep ocean water introduces a geoid correction in the form of a dipolar ridge whose amplitude at the shore is about 11 cm. In addition to geostrophic currents, a semi-quantitative model for the thermohaline effects on sea surface topography is discussed in relation to sea level differences between the Atlantic and Mediterranean.In considering appropriate algorithms for local geoid computation, Kirby's Iterative Fourier Combination routine for combining altimetry and surface gravity is extended to account for global sea surface topography. The impact of very fast spherical harmonic analysis algorithms is discussed and a simple physical model is given which explains the short coherence lengths found for the global gravity field. This necessary assumption for any local geoid computation was hitherto purely empirical.Finally, the use of land data such as tide gauges, ellipsoidal heights from GPS, and orthometric heights from first order levelling are reviewed as ways of corroborating geodetic estimates of sea surface topography and its relation to levelling datums. Successful examples are given from southern England.  相似文献   

14.
The continental tectosphere and Earth's long-wavelength gravity field   总被引:2,自引:0,他引:2  
To estimate the average density contrast associated with the continental tectosphere, we separately project the degree 2–36 non-hydrostatic geoid and free-air gravity anomalies onto several tectonic regionalizations. Because both the regionalizations and the geoid have distinctly red spectra, we do not use conventional statistical analysis, which is based on the assumption of white spectra. Rather, we utilize a Monte Carlo approach that incorporates the spectral properties of these fields. These simulations reveal that the undulations of Earth's geoid correlate with surface tectonics no better than they would were it randomly oriented with respect to the surface. However, our simulations indicate that free-air gravity anomalies correlate with surface tectonics better than almost 98% of our trials in which the free-air gravity anomalies were randomly oriented with respect to Earth's surface. The average geoid anomaly and free-air gravity anomaly over platforms and shields are significant at slightly better than the one-standard-deviation level: −11±8 m and −4±3 mgal, respectively. After removing from the geoid estimated contributions associated with (1) a simple model of the continental crust and oceanic lithosphere, (2) the lower mantle, (3) subducted slabs, and (4) remnant glacial isostatic disequilibrium, we estimate a platform and shield signal of −8±4 m. We conclude that there is little contribution of platforms and shields to the gravity field, consistent with their keels having small density contrasts. Using this estimate of the platform and shield signal, and previous estimates of upper-mantle shear-wave travel-time perturbations, we find that the average value of ∂lnρ/∂lnνs within the 140–440 km depth range is 0.04±0.02. A continental tectosphere with an isopycnic (equal-density) structure (∂lnρ/∂lnνs=0) enforced by compositional variations is consistent with this result at the 2.0σ level. Without compositional buoyancy, the continental tectosphere would have an average ∂lnρ/∂lnνs≈0.25, exceeding our estimate by 10σ.  相似文献   

15.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

16.
Some steps were taken recently for Hungary aiming at the determination of geoid heights with a cm-accuracy. The present HGTUB98 gravimetric solution was based on terrestrial gravity data, height data and the EGM96 geopotential model, and was computed with the 1D Spherical FFT method. The gravity data were used in the area 45.5 ° ≤ϑ ≤ 49 °, 16 ° ≤ λ ≤ 23 °, the resolution of the grid was 30″ × 50″. The DTM used had a resolution of 1 km × 1 km.Our solution was evaluated using GPS/levelling data at 340 and 308 points respectively and at 138 vertical deflection points. We have compared our solution to the European EGG97 geoid solution, the gravimetric solution HGR97B developed by A. Kenyeres and the litospheric geoid solution by G. Papp. We have correlated our recent HGTUB98 solution to the Moho model of Central Europe. The comparison with GPS/levelling yielded respectively an accuracy of ±8.7 cm and ±4.4 cm (in terms of standard deviation) when a linear trend was removed. The comparison of the 1D planar FFT solution for the deflections of the vertical with 138 astrogeodetic deflections yielded an accuracy (in terms of standard deviation) of ±0.62″ and ±0.52″ for ξ and η, respectively.  相似文献   

17.
在介绍球面小波理论的基础上,推导和比较了几种球面小波,分析了最新地球重力模型-EGM96,以此为依据,把球面小波多分辨分析用于计算全球自由空气异常及重力大地水准面,并对处理结果做出解释。  相似文献   

18.
Since the creation of the Sub-Commission for the Geoid in South America (SCGSA) in 1993, many efforts have been carried out in the different countries in order to improve the geoid computations. The validation of the gravity data in Brazil, Uruguay, Argentina and Chile has improved many of the gravity surveys in those countries. GPS observations carried out on benchmarks of the geometric levelling have been facilitated by the SIRGAS (Geocentric Reference System for South America) project and can contribute for testing the gravimetric determination of the geoid. Several countries made available GPS data for SCGSA like Brazil, Argentina, Venezuela and Chile. The Digital Terrain Model (DTM) has been improved considerably in Brazil and Argentina. A great number of topographic maps has been digitized to generate a DTM grid of 3′ resolution (DTM3). New gravity surveys in the Amazonas region have been in progress along Rio Negro and its tributaries. Many different organizations in most of the countries in South America have been involved with local or national geoid computations. This fact has brought attention to the data in several countries facilitating the efforts for a continental geoid. All these activities are strongly supported by Geophysical Exploration Technology (GETECH) — University of Leeds. The objective envisaged at the moment is to produce a 10′ resolution geoid for South America using FFT and to compare the result with that of the numerical integration of the modified Stokes integral.  相似文献   

19.
An unsolved problem of regional importance for both the evolution and structure of the Northwest German Basin is the existence or non-existence of the so-called Bramsche Massif. Explaining the nature of this massif and the cause of a related strong, positive Bouguer anomaly (Bramsche Anomaly) is critical. In the study described here, we tested an existing “intrusion model” against a newer “inversion model” in the southern Northwest German Basin. In the intrusion model, the strongly-positive Bouguer anomaly represents the gravity effect of an intrusion at depths between 6 and 10 km. More recent interpretations invoke tectonic inversion rather than intrusion to explain increased burial and the low level of hydrocarbon maturity found in boreholes. We tested these different interpretations by constructing 3D forward density models to 15 km depth. The intrusion model was updated and adjusted to incorporate recent data and we also modelled pre-Zechstein structures using different scenarios. The final model has a very good fit between measured and modelled gravity fields. Based on currently available seismic and structural models, as well as borehole density measurements, we show that the positive Bouguer anomaly cannot be modeled without a high-density, intrusive-like body at depth. However, further in-sight into the crustal structures of the Bramsche region requires more detailed investigations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
New geoid computations for the Hellenic area are carried out using (a) gravity anomalies for the land area available from old and new data bases, and gravity data for the sea area derived from altimetry and a recent digitization of sea gravity maps, and (b) a 1km × 1km digital terrain model. The EGM96 geopotential model is used as the reference field. In order to assess the quality of the computed geoid heights in the continental area comparisons were carried out with GPS/leveling heights and the recently available European Gravimetric Geoid EGG97. In the sea area the geoid heights were compared with sea surface heights of the recent and more accurate TOPEX/POSEIDON (T/P) altimetry mission. At the end of this article the improvement of the data bases is discussed and some plans for further development in the methodological schedule are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号