首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computer-based landscape evolution models offer the ability to evaluate landscape stability over the short (annual), medium (decades to hundreds of years) and long-term (thousands of years). Modeling has advantages in that design ideas can be tested, different surface material properties can be evaluated and risk analysis carried out. Landscape evolution models allow landscape surface change through time. These models also offer the advantage that the landscape can be evaluated visually as it develops through time, which is not possible with other types of models. Landscape evolution models can be used for not only soil loss assessment (i.e. tonnes/hectare/year), but also to evaluate the method of soil loss (i.e. rill or interrill erosion). This study examines a range of waste rock dump designs for the Minera Alumbrera Ltd. copper mine, Argentina. An erosion assessment using the SIBERIA erosion model over a 1000-year simulation period demonstrates waste rock dump designs using a conventional stepped design of backsloping benches and caps with angle of repose slopes provide the lowest average erosion rates and depths of incision than do other designs. Caution should be applied in interpreting these results as the SIBERIA erosion model is sensitive to parameter input and in this case was calibrated and run using a generic set of parameters that are not site specific. Nevertheless, the results provide a guide as to the strengths and weaknesses of different rehabilitation designs and demonstrate the insights that modeling studies can provide.  相似文献   

2.
Scientific inquiry into Pleistocene stratigraphy of the Lower Mississippi Valley (LMV) dates to early writings of European naturalists in the late 19th century. By the early 20th century, landscape evolution concepts, stratigraphic models, and regional syntheses had developed for most areas. The 1944 monograph of H.N. Fisk marks the advent of a predictive stratigraphic and landscape evolution model that links form and process to a predominantly glacioeustatic mechanism. The Fiskian model gained widespread acceptance, and decades passed before significant alternate models began to emerge. Revised stratigraphic and geomorphic concepts are presently developing from newly acquired environmental and engineering data. Present scenarios classify Pleistocene outcrop areas into erosional and constructional landscapes, and veneers of eolian, colluvial, fluvial, coastal, and marine origin can drape both types of surfaces.

The southern LMV and adjacent Gulf Coastal Plain (GCP) experienced significant landscape change during the Pleistocene. Late Tertiary (Pliocene?) to Early Pleistocene deposition of the Upland Complex was by streams with a high sand and gravel load relative to its mud load. The regional drainage network and fluvial system behavior was probably significantly different from the modern. Braided stream alluvial fan complexes received sediment from highland source areas adjacent to the LMV and the glaciated mid-continent. It is plausible that part of Upland Complex deposition predates initial glacial advances.

From Early to Middle Pleistocene, an erosional landscape formed during a dissection period that chiefly postdates soil formation on stable landscape positions of the Upland Complex. Slope evolution truncated a regionally extensive geosol in multiple phases, and parts of the erosion surface complex are graded to the oldest preserved constructional alluvial plains in present valleys. Toe and foot slope positions of the erosion surface complex and its correlative alluvial plains are presently delineated as the Intermediate Complex. Constructional landscapes formed at this time are sparsely preserved; Fisk's Montgomery Terrace in the Lower Red River Valley (LRRV) is the best preserved example. Influences on the development of erosion surfaces in the LMV are not well understood; however interactions of relative sea level fall, climate change, and epirogenic crustal movement are plausible factors.

From the latter part of Middle Pleistocene to the Holocene, there was widespread evolution of modern constructional landscapes. Constructional alluviation preserved lithofacies of mixed load, laterally accreting, meandering streams that developed over large areas of the southern LMV to form parts of the Prairie Complex. Lateral planation in valleys and stable rates of upland sediment generation were dominant processes during Prairie Complex deposition.

Pleistocene stratigraphic examples considered important by Fisk are still considered relevant to modern stratigraphic investigators. Presently, Pleistocene units of the southern LMV, the adjacent LRRV, and central GCP can be correlated only by relative stratigraphic relationships. Refined chronostratigraphic and paleoenvironmental models for these areas would help improve the understanding of the geomorphic influences on Quaternary landscape evolution in the region.  相似文献   


3.
Functional relationships between erosion rates and topography are central to understanding controls on global sediment flux and interactions among tectonics, climate, and erosion in shaping topography. Based on such relations digital elevation models (DEMs) allow predicting landscape-scale erosion rates to the degree that process models can be calibrated and to the extent that such processes reflect elevation, drainage area, and aspect, or their derivatives such as slope and curvature. Digital elevation models allow investigating the influence of erosional processes on landscape form and evolution through generalized quantitative expressions often referred to as ‘erosion laws’. The analytical forms of such expressions are derived from physical principles, but only limited data are available to guide calibration to particular landscapes. In addition, few studies have addressed how different transport laws interact to set landscape-scale erosion rates in different environments. Conventionally, landscape-scale sediment flux is considered to be linearly related to slope or relief, but recent analyses point toward non-linear relations for steep terrain in which changes in the frequency of landsliding accommodate increased rates of rock uplift. In such situations, landscape-scale erosion rates are more closely tied to erosion potential predicted by models of bedrock river incision. Consequently, I propose that using DEMs to predict absolute or relative erosion rates at the landscape-scale counter-intuitively involves the rate of fluvial processes as governing the sediment flux from steep landscapes, and rates of hillslope processes as governing sediment flux from low-gradient landscapes. To cite this article: D.R. Montgomery, C. R. Geoscience 335 (2003).  相似文献   

4.
丹霞地貌定义、分类及丹霞作用研究   总被引:3,自引:0,他引:3  
丹霞地貌以广东丹霞山最为典型而得名,是一种发育赤壁丹崖群的特殊地貌类型,近年来随着旅游开发不断升温而成为景观地貌学关注的重要对象,但其中一些基本问题长期争论不休。本文从命名地的地质、地貌特征和我国区域地质发展史角度出发,重新厘定了丹霞地貌的定义与分类,强调丹霞地貌的三大基本要素:赤壁丹崖地貌特征、燕山旋回以来陆相红层基础和以流水侵蚀为主的地质营力。西北地区也广泛发育丹霞地貌,一类是黄土覆盖下的古丹霞,另一类是干旱区片流侵蚀和泥乳贴膜的丹霞。丹霞作用是对中新生代陆相碎屑岩经流水侵蚀、重力崩塌和风化剥落等多种地质作用的统称,其产物就是丹霞地貌。岩性控制和崖壁片流垂蚀是丹霞作用的两种特殊机理。红层盆地的沉积相及其岩性差异控制着丹霞地貌的发育及其景观类型,据此在地貌发育的构造、外力和时间三个因素基础上增加了岩性因素。南方典型的红层盆地中,边缘冲积扇相粗碎屑岩地区可经历青年、中年和老年等发展阶段,盆地中央湖泊相泥岩、粉砂岩却没有经历过绝壁陡崖发展阶段。暴雨水流在丹霞崖壁上发生近垂直向下的侵蚀作用叫片流垂蚀作用。其中冲蚀作用形成竖状沟槽、竖状洞穴,涡蚀作用(借助风力吹动发展成垂直崖壁的涡旋)形成圆锥状洞穴、串珠状洞穴,后者使得洞穴沿软弱岩层分布,进一步扩大成扁平状洞穴。这些洞穴形成年代具有垂向一致性,不具有上老下新变化趋势,而在水平方向上,不同部位洞穴的形成年代可能不同。  相似文献   

5.
周翠  姜勇彪  段政  钱迈平  张翔  陈荣 《地质论评》2021,67(1):129-143
花岗岩地貌具有独有的景观特征和演化规律,本文对江西南昌梅岭地区新元古代花岗岩地貌景观特征、空间分布规律和成因演化规律进行了系统分析与总结.梅岭花岗岩地貌主要发育于新元古代花岗岩之上,并在岩性、区域断裂和气候控制的风化侵蚀作用下,逐步形成了以崩塌倒石堆积、石蛋为特色的花岗岩低山丘陵地貌;新生代以来,梅岭地区长期受到太平洋...  相似文献   

6.
Recent accounts suggest that periglacial processes are unimportant for large-scale landscape evolution and that true large-scale periglacial landscapes are rare or non-existent. The lack of a large-scale topographical fingerprint due to periglacial processes may be considered of little relevance, as linear process-landscape development relationships rarely can be substantiated. Instead, periglacial landscapes may be classified in terms of specific landform associations. We propose “cryo-conditioning”, defined as the interaction of cryotic surface and subsurface thermal regimes and geomorphic processes, as an overarching concept linking landform and landscape evolution in cold regions. By focusing on the controls on processes, this concept circumvents scaling problems in interpreting long-term landscape evolution derived from short-term processes. It also contributes to an unambiguous conceptualization of periglacial geomorphology. We propose that the development of several key elements in the Norwegian geomorphic landscape can be explained in terms of cryo-conditioning.  相似文献   

7.
Scolobig  Anna  Pelling  Mark 《Natural Hazards》2015,79(1):7-24
Soil erosion remains a critical concern worldwide, and predicting the occurrence, location, and evolution of rills on hillslopes and agricultural landscapes remains a fundamental challenge in resource management. To address these questions, a relatively large soil-mantled experimental landscape was subjected to continuous rainfall and episodes of base-level lowering to force the development of a rill network system, and high-resolution digital technologies were used to quantify its evolution over time and space. These results show that waves of degradation and landscape incision occurred in response to base-level lowering, where headcut development and its upstream migration produced a fourth-order rill network. Stream order indices derived for this incised rill network confirm that this pattern emerges relatively early in time, and it remains relatively unchanged despite continued application of rainfall and additional base-level lowering. Using the same digital technologies, a surface drainage system was defined and mapped on the landscape prior to any soil erosion and rill development, and similar network indices also were derived. These results show that network characteristics and organization of this surface drainage system, as well as its location in space, were in very close agreement with the subsequent incised rill network following base-level lowering. It is demonstrated here that rill networks formed in this experiment are strongly conditioned by surface drainage patterns prior to any significant soil erosion and that the location of rill networks can be accurately delineated through analysis of the high-resolution digital terrain.  相似文献   

8.
Pronounced climatic warming associated with the Late Weichselian Pleniglacial‐to‐Lateglacial transition caused considerable environmental changes throughout the former periglacial zones (in Europe ~53°–46°N). During permafrost degradation and subsequent ground subsidence (i.e. thermokarst processes), the landscape changed rapidly. In this study we investigated a flat mid‐altitude area in south Bohemia, Czech Republic, lying close to the southern limit of the Weichselian permafrost. We discovered palaeo‐lake basins with sedimentary infillings up to 11 m in depth. According to radiocarbon and palynostratigraphical dating, these basins were formed at the onset of the Late Pleniglacial‐to‐Lateglacial transition, whereas the smaller depressions were formed later. We suggest that the basins resulted from thermal and fluvio‐thermal erosion of the former permafrost and represent remnants of discontinuous gullies and possibly collapsed frost mounds (pingo/lithalsa scars). The formation of this a fossil thermokarst landscape was climatically driven and multiple phased, with the major phase during the climatic warming and wetting at the onset of GI‐1e (Bølling) and the minor phase during GI‐1c (Allerød). This study enhances knowledge of the palaeogeography of the former European periglacial zone by showing that Late Pleistocene thermokarst activity could have had a significant impact on the evolution of the landscape of at least some regions of central Europe along the southern limit of the continuous permafrost zone. The research also points to a similar history for the physical transformation of the landscape of the former European periglacial zone and current thermokarst landscapes and could be a valuable source of information with respect to the future transformation of the Arctic under conditions of ongoing global warming.  相似文献   

9.
Continental erosion is known to be strongly controlled by climate but the way by which geomorphological systems respond to climate change still remains poorly understood. Recent numerical modelling suggests that drainage networks are subjected to strong spatial fluctuations but few studies of natural systems have addressed this phenomenon because of the difficulty of documenting the evolution of erosional landscapes. A detailed field analysis has allowed reconstruction of the past topography of a drainage basin located in southern France where remnants of a past landscape are well preserved. A change from a smooth to a present-day dissected landscape is observed and related to a change in the dominant processes of erosion. This evolution is interpreted in terms of fluctuations in drainage network extent in response to a Holocene increase in precipitation.  相似文献   

10.
11.
柴乐  衷存堤  黄新曙  王道英  郭福生  谭玉华 《地质论评》2022,68(2):2022030003-2022030003
江西武功山花岗岩穹窿构造地貌景观类型具有多样性、典型性,具有极高的美学价值、科学价值和旅游开发价值。武功山花岗岩地貌类型可划分为花岗岩风化壳高山草甸、花岗岩侵蚀构造地貌、花岗岩流水侵蚀地貌和花岗岩崩塌堆积地貌等,而且每一类型又有多种微地貌景观,具有显著的集聚性特征,主要集中在金顶、明月山和羊狮幕地区,空间上可分为4个梯度,分别为中心高山草甸带、中心边缘构造侵蚀地貌区、外围峡谷、孤峰、瀑布、温泉区、武功山主山体前缘区。花岗岩穹窿构造核部及外缘区域的花岗岩地貌发育模式和发育阶段具有明显差异,反映了武功山不同山体单元多期差异性隆升后,在亚热带气候环境下,流水溯源侵蚀、构造、岩体性质等内外营力对原始地貌面的差异性作用过程。本研究不仅可为花岗岩穹窿构造地貌景观空间展布规律和地貌特征的研究提供有效借鉴,而且可为武功山地区地学科普、地质遗迹保护等提供支撑。  相似文献   

12.
Some geological implications of average Quaternary glacial conditions   总被引:1,自引:0,他引:1  
Analyses of Quaternary landscape evolution tend to focus on events associated with culminations of glacial and interglacial ages, but for most of Quaternary time, environments were intermediate in character. Average Quaternary glacial conditions, based on assessment of the marine isotope record, approximated those near the stage 2/stage 1 transition and during substages 5b and 5d; isotope stages 3 and 4 and substages 5a-d lie within one standard deviation of the mean value. Under average glacial conditions, ice sheets lying over northern North America and Europe were much more contracted than their full-glacial counterparts, and the distribution of mountain glaciers reflected a snowline depression of some 500 m. Geomorphic processes operating under average Quaternary conditions contributed importantly to landscape evolution. Examples of landscapes that may represent such average conditions include cirques and fluvial deposits of the Pacific Northwest, the fjords and strandflat of western Norway, and atolls of the tropical oceans. By examining the geologic record from the perspective of average conditions, rather than those of climatic extremes, added insight can be gained regarding the evolution of Quaternary landscapes.  相似文献   

13.
Hillslope Topography from Unconstrained Photographs   总被引:1,自引:0,他引:1  
Quantifications of Earth surface topography are essential for modeling the connections between physical and chemical processes of erosion and the shape of the landscape. Enormous investments are made in developing and testing process-based landscape evolution models. These models may never be applied to real topography because of the difficulties in obtaining high-resolution (1–2 m) topographic data in the form of digital elevation models (DEMs). Here we present a simple methodology to extract the high-resolution three-dimensional topographic surface from photographs taken with a hand-held camera with no constraints imposed on the camera positions or field survey. This technique requires only the selection of corresponding points in three or more photographs. From these corresponding points the unknown camera positions and surface topography are simultaneously estimated. We compare results from surface reconstructions estimated from high-resolution survey data from field sites in the Oregon Coast Range and northern California to verify our technique. Our most rigorous test of the algorithms presented here is from the soil-mantled hillslopes of the Santa Cruz marine terrace sequence. Results from three unconstrained photographs yield an estimated surface, with errors on the order of 1 m, that compares well with high-resolution GPS survey data and can be used as an input DEM in process-based landscape evolution modeling.  相似文献   

14.
Mantle convection modelling can be used to understand the temporal evolution of dynamic, or convectively maintained, topography. A promising way of assessing these geodynamic models is by comparison of the predicted erosional response of dynamic topography with observed offshore sedimentary records. However, it is difficult to deconvolve this observed record into contributions from changes in climate, tectonics, and dynamic topography. Here, we use a landscape evolution model capable of producing simulations at the necessary spatial and temporal scales to quantify landscape response to moderate changes in dynamic topography in the presence of flexural isostatic unloading and loading due to erosion and deposition. We demonstrate that moderate changes in dynamic topography can produce an erosional response in the form of increased sediment flux to continental margins. This response can persist long after the influence of dynamic topography and is dependent on the interplay of uplift rate, rock erodibility and initial topography.  相似文献   

15.
新疆乌恰康苏地区位于西昆仑山与西南天山对冲作用形成的盆山耦合带,其构造地貌具有显著的山地-平原分布格局特征.文章以"3S"技术为基础进行构造地貌填图,划分新疆乌恰康苏地区的景观类型,研究构造地貌对该区域景观生态格局的影响.采用垂向山地-平原构造地貌为指标,划分5个景观类;以土地利用类型+植被覆盖为指标,划分6个景观型;...  相似文献   

16.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   

17.
雅鲁藏布江大峡谷地貌响应时间域的定量计算   总被引:4,自引:2,他引:2       下载免费PDF全文
基岩河道流域地区的地貌演化定量化研究在构造-气候-表面过程关系的探讨中具有十分重要的意义。定量化的分析主要关注气候、构造等外在因素以及河流内在调节机制对地貌演化的影响。本文总结了关于基岩河道流域地貌分析的定量方法和模型的研究进展,并利用DL模型对雅鲁藏布江中下游河段进行了演算,结果显示该地区在稳定状态下地貌演化时间域在0.065~0.420M a之间,反映了该地区快速的地貌演化过程。  相似文献   

18.
The dynamics of granitic landscapes are modulated by bimodal weathering, which produces patchy granular soils and expanses of bare rock ranging from meter-scale boulders to mountain-scale domes. We used terrain analysis and with cosmogenic nuclide measurements of erosion rates to quantitatively explore Wahrhaftig’s decades-old hypothesis for the development of “stepped topography” by differential weathering of bare and soil-mantled granite. According to Wahrhaftig’s hypothesis, bare granite weathers slower than soil-mantled granite; thus random erosional exposure of bare rock leads to an alternating sequence of steep, slowly weathering bedrock “steps” and gently sloped, but rapidly weathering, soil-mantled “treads.” Our investigation focused on the terrain surrounding the Southern Sierra Critical Zone Observatory (CZO), which is underlain by granitic bedrock and lies outside the limits of recent glaciation, in the heart of the stepped topography described by Wahrhaftig. Our digital terrain analysis confirms that steep steps often grade into gentle treads, consistent with Wahrhaftig’s hypothesis. However, we observe a mix-and-match of soil and bare rock on treads and steps, contrary to one of the hypothesis’ major underpinnings – that bare rock should be much more common on steps than on treads. Moreover, the data show that bare rock is not as common as expected at step tops; Wahrhaftig’s hypothesis dictates that step tops should act as slowly eroding base levels for the treads above them. The data indicate that, within each landscape class (i.e., the steps and treads), bare rock erodes more slowly than surrounding soil. This suggests that the coupling between soil production and denudation in granitic landscapes harbors a tipping point wherein erosion rates decrease when soils are stripped to bedrock. Although broadly consistent with the differential weathering invoked by Wahrhaftig, the data also show that steps are eroding faster than treads, undermining Wahrhaftig’s explanation for the origins of the steps. The revised interpretation proposed here is that the landscape evolves by back-wearing of steps in addition to differential erosion due to differences in weathering of bare and soil-mantled granite.  相似文献   

19.
江西武功山花岗岩穹窿构造地貌景观类型具有多样性、典型性,具有极高的美学价值、科学价值和旅游开发价值。武功山花岗岩地貌类型可划分为花岗岩风化壳高山草甸、花岗岩侵蚀构造地貌、花岗岩流水侵蚀地貌和花岗岩崩塌堆积地貌等,而且每一类型又有多种微地貌景观,具有显著的集聚性特征,主要集中在金顶、明月山和羊狮幕地区,空间上可分为4个梯度,分别为中心高山草甸带、中心边缘构造侵蚀地貌区、外围峡谷、孤峰、瀑布、温泉区、武功山主山体前缘区。花岗岩穹窿构造核部及外缘区域的花岗岩地貌发育模式和发育阶段具有明显差异,反映了武功山不同山体单元多期差异性隆升后,在亚热带气候环境下,流水溯源侵蚀、构造、岩体性质等内外营力对原始地貌面的差异性作用过程。本研究不仅可为花岗岩穹窿构造地貌景观空间展布规律和地貌特征的研究提供有效借鉴,而且可为武功山地区地学科普、地质遗迹保护等提供支撑。  相似文献   

20.
利用计量学软件Citespace处理分析2008-2020年间国内外文献,揭示钙华研究在基于同位素技术的钙华成因、钙华景观特点及地貌演化、钙华生物成因和钙华景观退化等方面取得的重要研究进展,阐明了全球钙华景观的分布、特点、物质组成、成因类型及典型钙华景观退化的现状和原因,推动了钙华自然遗产景观的保护及钙华研究的国际合作。目前,急需加强钙华内生动力与外生动力的复合作用、微生物对钙华沉积的耦合作用、钙华景观退化的微观结构表现等方面的基础研究及钙华景观生态修复保育关键技术的研发。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号