首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The Ahar area is located in East Azarbaijan province, and covers an area of about 2,500 km2. Spectral mapping techniques were applied on VNIR and SWIR of ASTER data for discriminating between hydrothermal alteration zones and the identification of high potential mineralized lithological unit associated with hydrothermal porphyry copper mineralization in the Ahar. In this research to remove atmospheric and topographic effects from ASTER data, the log-residual method (LRM) was used. Four methods, Relative Band Depth Ratios (RBD), Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and matched filtering (MF), were used to processing and interpretation of remote sensing data in the study area. Results show that ASTER images provide preliminary mineralogy information and geo-referenced alteration maps at low cost and with high accuracy for reconnaissance porphyry copper mineralizations.  相似文献   

2.
Abstract

The Shahr-e-Babak region located in the Kerman metallogenic belt is one of the high potential segments of Urumieh–Dokhtar magmatic arc for porphyry copper and epithermal gold mineralization in the south of Iran. This high potential zone encompasses several porphyry copper deposits under exploitation, development and exploration stages. The aim of this study is to evaluate Landsat-8 data and comparison with the Advanced Spaceborne Thermal Emission and Reflection Radiometer data-sets for mapping hydrothermal alteration zones related to Cenozoic magmatic intrusions in Shahr-e-Babak region. Previous studies have proven the robust application of ASTER in lithological mapping and mineral exploration; nonetheless, the Landsat-8 data have high capability to map and detect hydrothermal alteration zones associated with porphyry copper and epithermal gold mineralization. In this investigation, several band combinations and multiplications, developed selective principal component analysis and image transformations were developed for discriminating hydrothermal alteration zones associated with porphyry copper mineralization using Landsat-8 data.  相似文献   

3.
Abstract

Remote sensing techniques provide meaningful information to mineral exploration by identifying the hydrothermally altered minerals and the fracture/fault systems. In this article, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were processed to detect the hydrothermal alteration zones in Hamama area in the central part of the Eastern Desert of Egypt. Band ratios and principal component analyses successfully revealed the extent and the geometry of the hydrothermal alteration zones that trend in an NE–SW direction. Matching pixel spectrum derived from Minimum Noise Fraction, Pixel Purity Index, and n-dimensional visualization with reference spectra allowed characterizing key hydrothermal alteration minerals, including chlorite, kaolinite-smectite, muscovite, and haematite, in a successive alteration pattern. Field investigations and X-Ray Diffraction analysis validated the results revealed by ASTER data. In addition, the present prospects of significant gold and massive sulphide mineralizations are consistent with the detected hydrothermal alteration zone.  相似文献   

4.
The Sonajeel prospect is located in the Arasbaran belt which is one of the significant copper mineralization belts in NW Iran. There are mostly Eocene volcano-sedimentary rocks and Post Eocene intrusive units which are the source for mineralization in the area. ASTER multispectral images were used for delineation of alteration zones as a key feature of porphyry copper mineralization. Due to the need for geometric correction and ortho-rectification of the ASTER images, a high resolution QuickBird image with pixel width of about 60 cm (in PAN) was employed as a reference image in order to boost the rectification process. Ortho-rectification has been done by using digital elevation model which is created by topographic map in scale 1:1000. Potassic alteration as one of the essential alteration types in porphyry copper deposits, distributed mostly in the north of the Sonajeel prospect that determined by Thermal infrared bands processing. Phyllic and argillic alteration zones detected by creating relative absorption band-depth grids which are comparable to field observations. Moreover, silica rich areas which are remnants of hydrothermal circulation and form at the top of porphyry copper systems were detected for recognition of epithermal deposits (with 1 km distance from Sonajeel porphyry system). Finally, Remote Sensing results were compared by field evidences especially for determination of an epithermal system. Most parts of the alteration zones were observed of the surface confirmed with the remote sensing alteration (in average about 75% matched fittingly), displayed concentrations anomalous in the NE and NW parts of the studied area.  相似文献   

5.
Darrehzar porphyry copper deposit is situated in the Urumieh-Dokhtar magmatic assemblage of central Iran. In this paper, the integration of multiple geodata sets has been carried out using geographic information system for mapping lithology or hydrothermally altered rocks and also in selecting the best discriminating data elements for exploration of porphyry copper deposits located in areas with similar geological setting and climatic conditions. Principal component analysis is found useful for reducing large data sets into a few principal components. The integration of various geophysical data with SPOT image data through GIS has shown that the hydrothermal alteration and lithology can be mapped with more efficiency.  相似文献   

6.
7.
A combined approach to detect hydrothermal alteration zones and their mineral distribution is proposed for a relatively remote area around the Carhuarazo volcanic complex in southern Peru encompassing 2222 km2. In this region, tertiary volcanic structures associated with hydrothermal alteration are well known to host epithermal ore deposits. We make an attempt to detect and to quantify alteration minerals based on spectral analysis using ASTER reflectance data product provided by LP-DAAC. Besides commonly used ratio images, mineral indices (MI) and relative band depth images (RBD), we also extracted endmember spectra using Pixel-Purity-Processing preceded by minimum noise fraction transformation. These spectra are thought to represent the spectrally purest pixel of the image and show the typical absorption features of the main constituents. Based on this assumption, we used different spectral analysis methods in order to extract the most important alteration minerals for such an environment. These minerals were then used for matched filter processing in areas showing high values in MIs and RBDs. Using this method, we detected and mapped argillic alteration and variations in the distribution of important minerals like alunite, kaolinite or nacrite. There were no indications for the presence of propilitization at ASTER spatial resolutions. Our method can be applied easily to any ASTER scene and provides information about the intensity of alteration and the character of alteration zones. The intensity is highest in the centre of the Carhuarazo volcanic complex and is mostly argillic with a high content of alunite, dickite and other clay minerals.  相似文献   

8.
ASTER short-wave infrared bands were used to investigate the spectral discrimination of hydrothermally altered materials, based on the presence of minerals with diagnostic spectral features in wavelengths around 2200 nm (e.g. kaolinite and K-micas). Due to the presence of widespread albitized-greisenized materials, the Serra do Mendes granitoid, located in area of tropical savannah environment in Central Brazil, was selected for this study. The Spectral Angle Mapper (SAM) technique was used as an attempt to detect the presence of hydroxyl-bearing minerals in the domain of the hydrothermally altered materials. Results indicated that areas of altered materials were discriminated from the surrounding mainly due to the high overall reflectance of the whitish lithosols in these areas. The detection of hydroxyl-bearing minerals was blurred by the presence of a sparse grass cover in the alteration zone, which caused a slight increase in the SAM classification angles. As a consequence, the remote detection of hydroxyl-bearing minerals was restricted to a small number of pixels from barren areas. Results indicate that, for the environmental conditions of the study area, ASTER data are more efficacious for spectral characterization of rock–soil-vegetation associations than for the detection of alteration-derived minerals.  相似文献   

9.
This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment. The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) algorithms in the Sarduiyeh area, SE Kerman, Iran, using the visible-near infrared (VNIR) and short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the results were compared to evaluate the efficiency of methods. Three groups of alteration minerals were identified: (1) pyrophylite-alunite (2) sericite-kaolinite, and (3) chlorite-calcite-epidote. Results showed that high abundances within pixels were successfully corresponded to the alteration zones. In addition, a number of unreported altered areas were identified. Field observations and X-ray diffraction (XRD) analysis of field samples confirmed the dominant mineral phases identified remotely. Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%, respectively. It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets, rather than all the elements in the scene, the MTMF algorithm could be proposed.  相似文献   

10.
Concealed and fossilized geothermal systems are not characterized by obvious surface manifestations like hotsprings and fumaroles, therefore, could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion data-sets were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park, Nigeria. Feature-oriented principal component selection, spectral angle mapper, linear spectral unmixing were applied to ASTER data based on spectral characteristics of hydrothermal alteration key minerals for a systematic selective extraction of the information of interest. Analytical imaging and geophysics-developed processing methods were applied to Hyperion data for mapping iron oxide/hydroxide minerals and clay mineral assemblages in hydrothermal alteration zones. The results indicate that ASTER and Hyperion could be complemented for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.  相似文献   

11.
This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh–Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA analysis were considered as powerful traces to prepare final maps. The conventional, adjusted and modified variants of the TOPSIS method produced three mineral potential maps, in which the outputs indicate adequately matching of high potential zones with previous working and active mines in the region.  相似文献   

12.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) SWIR bands are used in identification of alteration zones which have developed during hydrothermal activity. Among the available methods of hyperspectral data analysis, PCA and RBD techniques are found to be useful in delineation of clay alteration and iron oxide zones. ASTER data analysis by PCA and RBD of (B5+B7)/B6 shows delineation of two distinct alteration zones with characteristic mineral assemblages viz. propylitic zone (chlorite, epidote, montmorillonite and calcite) and phyllic zone (illite, kaolinite, white mica and quartz). Iron oxide rich zones (gossans) have been delineated using ASTER band ratio technique (B2/B1). Geochemical dispersion of soil samples shows that Pb and Zn concentration is higher in phyllic and propylitic zones around Sawar and Malpura area respectively. Thus, ASTER data shows the potential in discrimination of metasedimentary rocks and delineation of alteration zones for targeting base metals around Sawar-Malpura area in central Rajasthan.  相似文献   

13.
One of the main geological evidence for many ore-bearing deposits and mineralized regions is the existence of points in highly fractured zones and the fragmentation intensity resulted from development of hydrothermal alteration along the fractures, the process leading to the occurrence of ore deposits. In this paper, a new algorithm has been proposed including a set of image processing techniques for detection the lineaments in satellite images by means of programming in MATLAB environment. The set of utilized methods includes line segment extraction by EDLine algorithm, merging line segments by Tavares method and linking the resulting line segments based on the collinearity and proximity criterion. The tectonic structures were stabilized by B-Spline curve fitting. The proposed algorithms were implemented on the ASTER image of a structurally multiple fractured region located in the central Iran, and the lineament map of Venarch area has been depicted. The results obtained from the proposed algorithms indicate a high accuracy of the operations detection of 80% for the reference map lineaments and the overall accuracy of the method is effectively reported as 62%. Combination of the above algorithms proposes a new method that precisely resulted in obtaining image processing of geological evidence for increasing the accuracy and decreasing the risk, before any field operations.  相似文献   

14.
The study area is located near the town of Filippoi, north of the city of Kavala in northern Greece, known from ancient times for its rich gold mines, situated inside hydrothermal alteration zones (Fe–Mn oxide minerals). A Very High-Resolution (0.5 m pixel size) image of Worldview-2 satellite was digitally enhanced, yielding target areas of potential ore existence and lineaments. Ground-truth that followed digital image processing, revealed abandoned ancient mines, slags and ore occurrences. Also, a number of lineaments delineated on the satellite image were verified as faults.  相似文献   

15.
Erosion reduces soil productivity and causes negative downstream impacts. Erosion processes occur on areas with erodible soils and sloping terrain when high-intensity rainfall coincides with limited vegetation cover. Timing of erosion events has implications on the selection of satellite imagery, used to describe spatial patterns of protective vegetation cover. This study proposes a method for erosion risk mapping with multi-temporal and multi-resolution satellite data. The specific objectives of the study are: (1) to determine when during the year erosion risk is highest using coarse-resolution data, and (2) to assess the optimal timing of available medium-resolution images to spatially represent vegetation cover during the high erosion risk period. Analyses were performed for a 100-km2 pasture area in the Brazilian Cerrados. The first objective was studied by qualitatively comparing three-hourly TRMM rainfall estimates with MODIS NDVI time series for one full year (August 2002–August 2003). November and December were identified as the months with highest erosion risk. The second objective was examined with a time series of six available ASTER images acquired in the same year. Persistent cloud cover limited image acquisition during high erosion risk periods. For each ASTER image the NDVI was calculated and classified into five equally sized classes. Low NDVI was related to high erosion risk and vice versa. A DEM was used to set approximately flat zones to very low erosion risk. The six resulting risk maps were compared with erosion features, visually interpreted from a fine-resolution QuickBird image. Results from the October ASTER image gave highest accuracy (84%), showing that erosion risk mapping in the Brazilian Cerrados can best be performed with images acquired shortly before the first erosion events. The presented approach that uses coarse-resolution temporal data for determining erosion periods and medium-resolution data for effective erosion risk mapping is fast and straightforward. It shows good potential for successful application in other areas with high spatial and temporal variability of vegetation cover.  相似文献   

16.
Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature (<350 °C) hydrothermal fluid in serpentinization of ultramafic rocks in the region is inferred from analysis of deepest absorption features of muscovites at 2.20 μm, spectral abundance of lizardite and absence of prenhite-pumpyllite facies mineral assemblages. Talc was found to be the most common alteration product of serpentines followed by dolomites. Intense alteration of serpentines to talc along the fracture zone is attributed to the circulation of carbon dioxide rich hydrothermal fluids along these conduits. Kaolinite and halloysite are primarily associated with granites and are the result of hydrothermal alteration of plagioclase feldspar in granites while muscovite and illites are generally associated with phyllites and quartzites . The study demonstrates the potential of imaging spectroscopy for mapping hydrothermal alteration mineral assemblages in ultramafic complex.  相似文献   

17.
Many regions remain poorly studied in terms of geological mapping and mineral exploration in inaccessible regions especially in the Arctic and Antarctica due to harsh conditions and logistic difficulties. Application of specialized image processing techniques is capable of revealing the hidden linear mixing spectra in multispectral and hyperspectral satellite images. In this study, the applications of Independent component analysis (ICA) and Constrained Energy Minimization (CEM) algorithms were evaluated for Landsat-8 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing data for geological mapping in Morozumi Range and Helliwell Hills areas, Northern Victoria Land (NVL), Antarctica. The results of this investigation demonstrate the capability of the two algorithms in distinguishing pixel and subpixel targets in the multispectral satellite data. The application of the methods for identifying poorly exposed geologic materials and subpixel exposures of alteration minerals has invaluable implications for geological mapping and mineral exploration in inaccessible regions.  相似文献   

18.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

19.
There is considerable interest in optimizing geothermal exploration techniques via the mapping of alteration and evaporate mineralisation, as well as of thermal emissions associated with geothermally active areas on the Earth’s surface. Optical and thermal satellite sensor technologies, improvements in processing algorithms and the means for large scale (e.g. 1:250,000) spatial data distribution are required for detecting both these attributes. The extensive visible, -near, -shortwave and thermal infrared (VNIR-SWIR-TIR) data archive acquired by the multi-spectral Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER) provides a rich source of geoscience related imagery for geothermal exploration. Examples of generating large scale mosaicked ASTER imagery to provide province to continental mineral mapping have been undertaken in areas including such as Australia, western USA, Namibia and Zagros Mountains Iran. In addition, ASTER’s thermal infrared imagery also provides night time land surface temperature (LST) estimates relevant for detecting possible geothermal related anomalies.This study outlines existing methods for the application of ASTER data for geothermal exploration in East Africa. The study area encompasses a section of the East African Rift System across the Tanzanian and Kenyan border. The area includes rugged volcanic terrain which has had geological mapping of limited coverage at detailed scales, from various heritages and mapping agencies. This study summarizes the technology, the processing methodology and initial results in applying ASTER imagery for such compositional and thermal anomaly mapping related to geothermal activity. Fields observations have been used from the geothermal springs of Lake Natron, Tanzania, and compared with ASTER derived spectral composition and land surface temperature results. Published geothermal fields within the Kenyan portion of the study area have also been incorporated into this study.  相似文献   

20.
Spectral analysis technique has been utilized to identify the Bauxite mineral occurrences in Panchpatmali, Orissa, India. Spectral processing of Landsat ETM+ data has been carried out by converting the digital data from quantized and calibrated values to reflectance values. Minimum noise fraction transformation is used to determine the inherent dimensionality of reflected Landsat ETM+ data, to segregate noise in the data, and to reduce the computational requirements for subsequent processing and interactively to locate pure pixels within the data-set, projecting n-dimensional scatterplots. Spectral processing results are displayed in the form of images corresponding to each group of pixels (endmembers). Mixed tune matched filtering method has been applied on Landsat ETM+ images which gave three score (abundance) images for three different classes (endmembers) such as Bauxite, vegetation and soil. Further, mineralized zones are identified using image fusion of ERS-2 SAR and Landsat ETM+ data using intensity-hue-saturation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号