首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

2.
The Mössbauer spectra of one chromite at 298 K and one chromite at 298, 200, 170, 140 and 90 K have been analyzed in this study. A Voigt-based quadrupole splitting distribution (QSD) method was used to analyze the spectra. The tetrahedral site Fe2+ and the octahedral site Fe3+ quadrupole splitting distributions (QSDs) were obtained from the Mössbauer spectra of chromites, and the multiple tetrahedral site Fe2+ Gaussian QSD components and the large widths σ Δ of the Gaussian QSD components of the tetrahedral site Fe2+ QSDs for chromites were attributed to next-nearest neighbor effects. In addition, temperature dependences of the isomer shift and the quadrupole splitting were presented and discussed. Comparisons between the Mössbauer parameters for thickness-corrected folded spectra and raw-folded spectra of chromites were made, and the results show that the two sets of the Mössbauer parameters and ratios of ferric to total iron as well as χ2 are very close to each other. This is because of the small absorber thickness of chromites in this study. Comparisons between the Mössbauer parameters of chromites obtained using the Voigt-based QSD method and a Lorentzian doublet method were also made. The results show that there are some differences between the two sets of the Mössbauer parameters and ratios of ferric to total iron, but not significant. However, much larger χ2 were obtained when the Lorentzian doublet method was used to fit the spectra of chromites. This indicates that the Voigt-based QSD method is more adequate to analyze the Mössbauer spectra of chromites from the point of view of statistics.  相似文献   

3.
The color and spectroscopic properties of ironbearing tourmalines (elbaite, dravite, uvite, schorl) do not vary smoothly with iron concentration. Such behavior has often been ascribed to intervalence charge transfer between Fe2+ and Fe3+ which produces a new, intense absorption band in the visible portion of the spectrum. In the case of tourmaline, an entirely different manifestation of the interaction between Fe2+ and Fe3+ occurs in which the Fe2+ bands are intensified without an intense, new absorption band. At low iron concentrations, the intensity of light absorption from Fe2+ is about the same for Ec and Ec polarizations, but at high iron concentrations, the intensity of the Ec polarization increases more than ten times as much as Ec. This difference is related to intensification of Fe2+ absorption by adjacent Fe3+. Extrapolations indicate that pairs of Fe2+-Fe3+ have Fe2+ absorption intensity ~200 times as great as isolated Fe2+. Enhanced Fe2+ absorption bands are recognized in tourmaline by their intensity increase at 78 K of up to 50%. Enhancement of Fe2+ absorption intensity provides a severe limitration on the accuracy of determinations of Fe2+ concentration and site occupancy by optical spectroscopic methods. Details of the assignment of tourmaline spectra in the optical region are reconsidered.  相似文献   

4.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

5.
An attempt has been made to interpret natural sapphire optical absorption spectra with regard to the exchange-coupled pairs of iron impurities in their ferric and ferrous states. Level schemes have been calculated for Fe3+-Fe3+ and Fe2+-Fe2+ pairs of all the orders, their symmetry being observed. The selection rules are discussed. EPR and infrared spectroscopy information has been used to assist the optical spectroscopy data. The sapphire color has been interpreted as a function of Fe2+/Fe3+ ratios and of the presence of their pairs in the stone. The various types of charge compensation in Fe2+→Al3+ isomorphism are discussed.  相似文献   

6.
The Fe L 2,3-edge spectra for a range of natural minerals and synthetic solid solutions have been measured using the technique of parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM). The Fe L 2,3 -edges of the minerals are characterised by two white-line features and exhibit electron energy-loss near-edge structure (ELNES) characteristic of Fe valence state. For divalent iron, the Fe L 3 -edge spectra are dominated by a sharp peak (white-line) at ca. 707.8 eV, followed by a broader and less intense peak at ca. 710.5 eV. The ELNES on the Fe L 3 -edge of trivalent iron consists of a white-line with its maximum at ca. 709.5 eV and a preceeding peak at ca. 708.0 eV. Mineral solid solutions that contain both Fe2+ and Fe3+ exhibit an Fe L 3 -edge shape that is composed of Fe L 3 -edges from the respective Fe2+- and Fe3+-bearing end members. The integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) show clear differences for Fe2+ and Fe3+. We demonstrate the feasibility of quantification of the ferrous/ferric ratio in minerals by determining the integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) as a function of the ferric iron concentration resulting in an universal curve within the experimental errors. The application of the universal curve combined with the high spatial resolution using the PEELS/TEM allows the quantification of the ferric iron concentration on a scale down to 10 nm, which is illustrated from a sample of ilmenite containing hematite exsolution lamellae that shows different Fe L 2,3 -edge shapes consistent with variations in the Fe2+-Fe3+ ratio over distances of ca. 100 nm. Received: 30 July 1997 / Revised, accepted: 26 October 1997  相似文献   

7.
Five chlorite samples have been studied by 57Fe Mössbauer spectroscopy at different temperatures. The spectra are consistently described by a superposition of one ferric and three ferrous quadrupole doublets. All hyperfine data exhibit only minor variations from sample to sample, meaning that the structural and electronic properties of chlorite are rather insensitive to compositional changes and local cation disorder. Two of the ferrous doublets are ascribed to cis and trans co-ordinations in the T-O-T layers. The third ferrous doublet is interpreted as being due to ferrous ions in the hydroxide sheets. Its hyperfine parameters are close to those of the former doublets and the observed deviations from the parameter values found for pure brucite are discussed. Approximately 20 to 25 percent of the total iron is situated in the hydroxide sheets. All five chlorites contain about 10 percent Fe3+ which is most probably located on octahedral sites. The temperature dependence of the ferrous quadrupole splittings for two chlorites has been interpreted on the basis of the thermal populations of the two lowest electronic states of the Fe2+ ions. From this, the deformations of the different octahedral co-ordinations could be estimated.  相似文献   

8.
Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.  相似文献   

9.
Synthetic Fe3+-melilites containing NaCaFe3+-Si2O7-, Ca2Fe3+AlSiO7- or Sr2Fe3+AlSiO7-components have been studied by 57Fe Mössbauer spectroscopy. The spectrum of åkermanite containing an NaCaFe3+Si2O7-component consists of one doublet identified to belong to Fe3+ in T1 sites. The spectra of åkermanite and gehlenite containing Ca2Fe3+ AlSiO7- or Sr2Fe3+ AlSiO7-component consist of two doublets. The inner and outer doublets are identified to belong to Fe3+ in the less distorted T1 and that in the more distorted T2 sites, respectively. The area ratios of the spectra show that the site occupancy of Fe3+ (T1) in gehlenite is less than that in åkermanite in which the distribution of Fe3+ in T1 and T2 sites is apparently random. The different distributions can be explained in terms of competition between minimizing the deficiency in the electrostatic valence and the preference of Al for T1 sites which the isomer shift measurements show to be more ionic.  相似文献   

10.
Mössbauer spectra of biotite at 4 K are reported. The biotite crystals were oriented with the c-axis parallel to the γ-ray direction and some spectra were recorded with external magnetic fields of 40 kOe applied at right angles to the c-axis. Decrease of the magnetic-hyperfine field of both Fe2+ and Fe3+ ions on application of the external field shows that both Fe3+-Fe3+ pairs and Fe2+-Fe2+ pairs are coupled ferromagnetically.  相似文献   

11.
Cordierite has the ideal formula (Mg,Fe)2Al4Si5O18 .x(H2O,CO2), but it must contain some Fe3+ to account for its blue color and strong pleochroism. The site occupation and concentration of Fe3+ in two Mg-rich natural cordierites have been investigated by EPR and 57Fe Mössbauer spectroscopy. In addition, powder IR spectroscopy, X-ray diffraction, and TEM examination were used to characterize the samples. Single-crystal and powder EPR spectra indicate that Fe3+ is located on T11 in natural cordierites and not in the channels. The amount in Mg-rich cordierites is very small with an upper limit set by Mössbauer spectroscopy giving less than 0.004 cations per formula unit (pfu). Fe3+ in cordierite can, therefore, be considered insignificant for most petrologic calculations. Heat-treating cordierite in air at 1,000?°C for 2?days causes an oxidation and/or loss of Fe2+ on T11, together with an expulsion of Na+ from the channels, whereas heating at the Fe–FeO buffer produces little Fe3+ in cordierite. Heating at 1,000?°C removes all class I H2O, but small amounts of class II H2O remain as shown by the IR measurements. No evidence for channel Fe2+ or Fe3+ in the heat-treated samples was found. The blue color in cordierite arises from a broad absorption band (E//b and weaker with E//a) around 18,000?cm?1 originating from charge-transfer between Fe2+ in the octahedron and Fe3+ in the edge-shared T11 tetrahedron. It therefore appears that all natural cordierites contain some tetrahedral Fe3+. The brown color of samples heated in air may be due to the formation of very small amounts of submicroscopic magnetite and possibly hematite. These inclusions in cordierite can only be identified through TEM study.  相似文献   

12.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

13.
Natural sinhalites, MgAlBO4, from the Ratnapura District, Sri Lanka, and from Bodnar Quarry near Hamburg, Sussex Co., New Jersey, USA, have been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine the oxidation state and site occupancy of iron in the sinhalite structure. The samples contain about 3.35 and 1.46 wt% of total iron oxide, respectively. The structure refinement is successful and reproduces the total iron content provided that the substitution of Mg2+ by Fe2+ on the M2 position only is assumed. The 57Fe Mössbauer spectra at 77, 293, 573 and 773 K can be resolved into two doublets with hyperfine parameters common for octahedrally coordinated high-spin Fe2+. There is no evidence for iron in the tetrahedral site. Electronic structure calculations in local spin density approximation yield hyperfine parameters for Fe2+ on the M2-site at 0, 293, 573 and 773 K in quantitative agreement with experiments. Calculated spectroscopic properties for Fe2+ on the M1-site are at variance with the experimental data and, thus, indicate that substitution of Al3+ by Fe2+, if occurring at all, must be accompanied by considerable local expansion and distortion of the M1-octahedron.  相似文献   

14.
Fe57 Mössbauer spectra were measured on compositions of the series Fe1?x/3Ta1+x/3O4, 0≤x≤1. The spectra are characterized by mixed valencies of Fe2+ and Fe3+ ions for 0<x<1. Starting from x=0 with rutile structure, a trirutile structure forms towards x=1. Quadrupole splitting QS of Fe3+ is QS(Fe3+)≈0.55 mm/s and isomer shift IS is IS(Fe3+)≈0.40 mm/s (referred to Fe); both quantities exhibit minor variations along the series. The Fe2+ subspectra for x>0.5 were fitted using one symmetrical doublet; however, for x<0.5 two symmetrical doublets were necessary to describe these patterns. QS(Fe2+)=2.0–3.2 mm/s and IS(Fe2+)=0.90–1.15 mm/s for all compositions. In the case x<0.5, marked temperature dependent QS values appear to exist. This feature may be related to short range order effects and possibly also in part to intervalence electron transfer betwee Fe2+ and Fe3+ ions.  相似文献   

15.
 Time-resolved luminescence spectra of natural and synthetic hydrous volcanic glasses with different colors and different Fe, Mn, and H2O content were measured, and the implications for the glass structure are discussed. Three luminescence ranges are observed at about 380–460, 500–560, and 700–760 nm. The very short-living (lifetimes less than 40 ns) blue band (380–460 nm) is most probably due to the 4T2(4D) →6A1(6S) and 4A1(4G) →6A1(6S) ligand field transitions of Fe3+. The green luminescence (500–560 nm) arises from the Mn2+ transition 4T1(4G) →6A1(6S). It shows weak vibronic structure, short lifetimes less than 250 μs, and indicates that Mn2+ is tetrahedrally coordinated, occupying sites with similar distortions and ion–oxygen interactions in all samples studied. The red luminescence (700–760 nm) arising from the 4T1(4G) →6A1(6S) transition of Fe3+ has much longer lifetimes of the order of several ms, and indicates that ferric iron is also mainly tetrahedrally coordinated. Increasing the total water content of the glasses leads to quenching of the red luminescence and decrease of the distortions of the Fe3+ polyhedra. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

16.
A general model for the structural state of iron in a variety of silicate and aluminosilicate glass compositions in the systems Na2O-Al2O3-SiO2-Fe-O, CaO-Al2O3-SiO2-Fe-O, and MgO-Al2O3-SiO2-Fe-O is proposed. Quenched melts with variable Al/Si and NBO/T (average number of nonbridging oxygens per tetrahedrally coordinated cation), synthesized over a range of temperatures and values of oxygen fugacity, are analyzed with57Fe Mössbauer spectroscopy. For oxidized glasses with Fe3+/∑Fe>0.50, the isomer shift for Fe3+ is in the range ~0.22–0.33 mm/s and ~0.36 mm/s at 298 K and 77 K, respectively. These values are indicative of tetrahedrally coordinated Fe3?. This assignment is in agreement with the interpretation of Raman, luminescence, and X-ray,K-edge absorption spectra. The values of the quadrupole splitting are ~0.90 mm/s (298 K and 77 K) in the Na-aluminosilicate glasses and compare with the values of 1.3 mm/s and 1.5 mm/s for the analogous Ca- and Mg-aluminosilicate compositions. The variations in quadrupole splittings for Fe3+ are due to differences in the degree of distortion of the tetrahedrally coordinated site in each of the systems. The values of the isomer shifts for Fe2+ ions in glasses irrespective of Fe3+/∑Fe are in the range 0.90–1.06 mm/s at 298 K and 1.0–1.15 mm/s at 77 K. The corresponding range of values of the quadrupole splitting is 1.75–2.10 mm/s at 298 K and 2.00–2.35 mm/s at 77 K. The temperature dependence of the hyperfine parameters for Fe2+ is indicative of noninteracting ions, but the values of the isomer shift are intermediate between those values normally attributable to tetrahedrally and octahedrally coordinated Fe2+. The assignment of the isomer-shift values of Fe2+ to octahedral coordination is in agreement with the results of other spectral studies. For reduced glasses (Fe3+/∑Fe≈<0.50), the value of the isomer shift for Fe3+ at both 298 K and 77 K increases and is linearly correlated with decreasing Fe3+/∑Fe in the range of \(f_{O_2 } \) between 10?3 and 10?6 atm when a single quadrupole-split doublet is assumed to represent the absorption due to ferric iron. The increase in value of the isomer shift with decreasing \(f_{O_2 } \) is consistent with an increase in the proportion of Fe3+ ions that are octahedrally coordinated. The concentration of octahedral Fe3+ is dependent on the \(T - f_{O_2 } \) conditions, and in the range of log \(f_{O_2 } \) between 10?2.0 and 10?5 a significant proportion of the iron may occur as iron-rich structural units with stoichiometry similar to that of inverse spinels such as Fe3O4, in addition to isolated Fe2+ and Fe3+ ions.  相似文献   

17.
A comparative study of blue and green beryl crystals (from the region of Governador Valadares, Minas Gerais, Brazil) using electron paramagnetic resonance (EPR) and optical absorption (OA) spectroscopy is reported. The EPR spectra show that Fe3+ in blue beryl occupies a substitutional Al3+ site and in green beryl is localized in the structural channels between two O6 planes. On the other hand the infrared spectra show that the alkali content in the blue beryl is mostly at substitutional and/or interstitial sites and in green beryl is mostly in the structural channels. The OA spectra show two types of Fe2+. Thermal treatments above 200° C in green beryl cause the reduction of Fe3+ into Fe2+ accompanied by a change of color to blue. The blue beryl color does not change on heating. The kinetics of the thermal conversion of Fe3+ into Fe2+ is composed of two first order processes; the first one has an activation energy ΔE 1=0.30 eV and the second one has an activation energy ΔE 2=0.46 eV.  相似文献   

18.
Natural blue and colorless rare-gem mineral specimens of euclase from Brazil are investigated by electron paramagnetic resonance (EPR). Angular dependences of Fe3+ EPR spectra in three mutually perpendicular crystal planes are analyzed revealing g and D tensors with significant low-symmetry effects, as for example, the high asymmetry parameter E/D = 0.28. Fourth-order degree Stevens parameters are also included in analysis. The anisotropy of both g and D tensors is consistent with Fe3+ substituting for Al3+ ions in strongly distorted AlO5(OH) octahedra in which the oxygen distances range from 1.85 to 1.98 Å. Fe3+ is not responsible for the blue color because colorless and blue euclase show nearly the same Fe3+ concentration as measured by EPR. However, total iron content in blue sample is much higher than in the colorless one suggesting that the existing model that Fe2+–Fe3+ intervalence charge transfer transition may explain the blue color of euclase.  相似文献   

19.
A refined set of Mössbauer parameters (isomer shifts, quadrupole splittings, Fe2+/Fe3+ ratios) and lattice parameters were obtained from annites synthesized hydrothermally at pressures between 3 and 5 kbars, temperatures ranging from 250 to 780° C and oxygen fugacities controlled by solid state buffers (NNO, QMF, IM, IQF). Mössbauer spectra showed Fe2+ and Fe3+ on both the M1 and the M2 site. A linear relationship between Fe3+ content and oxygen fugacity was observed. Towards low Fe3+ values this linear relationship ends at ≈10% of total iron showing that the Fe3+ content cannot be reduced further even if more reducing conditions are used. This indicates that in annite at least 10% Fe2+ are substituted by Fe3+ in order to match the larger octahedral layer to the smaller tetrahedral layer. IR spectra indicate that formation of octahedral vacancies plays an important role for charge balance through the substitution 3 Fe2+ → 2 Fe3+ + ?(oct).  相似文献   

20.
An X-ray absorption spectroscopy (XAS) study of the Fe local environment in natural amethyst (a variety of α-quartz, SiO2) has been carried out. Room temperature measurements were performed at the Fe K-edge (7,112 eV), at both the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. Experimental results were then compared with DFT calculations. XANES experimental spectra suggest Fe to occur mainly in the trivalent state, although a fraction of Fe2+ is identified. EXAFS spectra, on the other hand, reveal an unusual short distance for the first coordination shell:  = 1.78(2) Å, the coordination number being 2.7(5). These results allow to establish that Fe replaces Si in its tetrahedral site, and that numerous local distortions are occurring as a consequence of the presence of Fe3+ variably compensated by protons and/or alkaline ions, or uncompensated. The formal valence of Fe, on the basis of both experimental and DFT structural features, can be either 4+ or 3+. Taking into account the XANES evidences, we suggest that Fe mainly occurs in the trivalent state, compensated by protons, and that a minor fraction of Fe4+ is stabilised by the favourable local structural arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号