首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
随着我国城市化进程的加快,城市热岛难显缓解之势,有关土地利用/覆盖类型、城市规模、城市形态对城市热岛的影响已有较多研究,尚缺少气候背景对我国城市昼夜地表热岛强度的影响研究。本文通过长时序的MODIS地表温度数据,从年均、季节和昼夜3个时间尺度,从全国、气候带、城市3个空间尺度探讨了我国347个城市昼夜地表热岛强度的空间分布特征以及时间变化规律。结果表明:① 昼夜差异:我国城市年均地表热岛强度白天(1.25±0.81 ℃)高于夜晚(0.79±0.43 ℃);② 季节差异:昼夜地表热岛强度在不同季节表现不同,白天表现为夏季高,冬季弱,夜晚四个季节差异不大;③ 气候带差异:昼夜地表热岛强度分布呈现明显的空间分异。白天地表热岛强度表现为热带及亚热带地区高于温带及高原地区,其中南亚热带表现为最强,高原气候区最弱;夜晚则表现为温带高于亚热带、热带及高原地区,其中中温带最强,北亚热带最弱;④ 时空变化:白天地表热岛强度年际呈非显著下降趋势(|Z|<1.96),而夜晚呈显著上升趋势(|Z|>1.96);昼夜地表热岛强度年际变化存在季节差异,白天地表热岛强度夏季上升趋势显著高于其他季节,夜晚四个季节都呈显著上升趋势,其中冬季地表热岛强度上升趋势最大;白天呈显著上升趋势的城市主要分布在热带及南亚热带地区,夜晚呈显著上升趋势的城市广泛分布在中温带和暖温带。  相似文献   

2.
To understand how hydrological and biological factors affect near-to off-shore variations in the siphonophore community,we sampled zooplankton at 82 stations in the northern South China Sea during summer,winter,and spring.Forty-one species of siphonophore were collected by vertical trawling.The species richness of siphonophores increased from the nearshore to offshore regions in all three seasons of investigation,with maximum richness in summer and minimum richness in winter.The abundance of siphonophores was also higher in summer than in spring and winter,concentrated in the nearshore region in the warm season and scattered in the offshore region in the cold season.Four siphonophore groups were classified according to the frequency of occurrence:nearshore,near-offshore,offshore,and tropical pelagic.Among them,the nearshore group had higher abundance nearshore compared with the offshore.The tropical pelagic group had higher species number offshore than nearshore.Spatial and temporal fluctuations in taxonomic composition and abundance of siphonophores were due to the influence of the coastal upwelling and surface ocean currents of the South China Sea,driven by the East Asia monsoonal system.  相似文献   

3.
Net primary productivity and species diversity of herbaceous vegetation of banj-oak (Quercus leucotrichophora A.Camus) forest in Kumaun Himalaya,India were analyzed.Across different growth forms (tall forbs,short forbs,cushion and spreading forbs,grasses),short forbs were most dominant component during rainy season (IVI=152) and winter season (IVI=167) and grasses during the winter season (IVI=148).Maximum above-ground production occurred during rainy season (132.5 g m-2) and minimum during winter season (2.8 g m-2).Below-ground production was maximum (85.9 g m-2) during winter season and minimum (14.9 g m-2) during summer season.Annual net shoot production was 150 g m-2 and below-ground production was 138 g m-2.Of the total input 61 % was channeled to above-ground parts and 39% to below-ground parts.  相似文献   

4.
2013年夏季中国南方区域性高温天气的成因分析   总被引:3,自引:0,他引:3  
为了对2013年夏季中国南方区域性高温天气进行系统的分析,采用统计分析等方法,利用常规气温资料及NCEP/NCAR再分析资料讨论了此次高温的特征及成因。结果表明:2013年夏季中国南方地区发生的高温事件相对历史同期增多,主要集中在华南北部至华北南部一带,其区域性高温天气的极端性十分突出,研究区域内的日平均气温、平均日最高气温、平均日最低气温以及高温日数都打破最高纪录,为历史罕见;西太平洋副热带高压范围偏大、强度偏强、西伸脊点位置偏西、脊线偏北,南亚高压偏北偏东,热带气旋活动范围偏南,出梅较早、梅雨季节短等因素导致中国南方长江中下游地区出现了长时间的区域性高温天气。  相似文献   

5.
Based on daily maximum and minimum temperatures at 18 meteorological stations in the Qilian Mountains and Hexi Corridor between 1960 and 2013, temporal and spatial variations in extreme temperatures were analysed using linear trends, ten-point moving averages and the Mann-Kendall test. The results are as follows: The trends in the majority of the extreme temperature indices were statistically significant, and the changes in the extreme temperatures were more obvious than the changes in the extreme values. The trends were different for each season, and the changes in rates and intensities in summer and autumn were larger than those in spring and winter. Unlike the cold indices, the magnitudes and trends of the changes in the warm indices were larger and more significant in the Hexi Corridor than in the Qilian Mountains. Abrupt changes were detected in the majority of the extreme temperature indices, and the extreme cold indices usually occurred earlier than the changes in the extreme warm indices. The abrupt changes in the extreme temperatures in winter were the earliest among the four seasons, indicating that these temperature changes were the most sensitive to global climate change. The timing of the abrupt changes in certain indices was consistent throughout the study area, but the changes in the cold indices in the Hexi Corridor occurred approximately four years before those in the Qilian Mountains. Similarly, the changes in the warm indices in the western Hexi Corridor preceded those of the other regions.  相似文献   

6.
城市的快速扩张诱发并加剧了城市热岛效应,对人类健康和生存发展提出严峻挑战,因此,探索城市组成对城市热岛的影响具有重要意义。本研究在传统城市热岛影响因子的基础上,重点分析城市组成与城市热岛的关系。以13个中国大城市为研究区,利用2015年夏季(6-8月)白天和夜间的MODIS LST数据计算城市热岛强度,并结合土地覆盖数据、人口、区位和气象数据,分析热岛强度和城市地表组成、地表空间格局、人口和区位4类因子的关系。研究结果表明:中国的13个大城市均存在不同程度的热岛效应,城市白天的热岛效应比夜间显著。影响城市白天热岛强度的主要因子为城市建筑用地和林地面积比例、城市建筑用地和林地平均斑块面积、城市建筑用地聚集度和人口密度。城市建筑用地和林地平均斑块面积、城市建筑用地聚集度和林地斑块密度是夜间热岛强度的主要影响因子。城市建筑用地面积和乡村林地面积的增加会导致城市热岛情况的加剧,而通过调节城市地表空间格局(减少平均建筑用地斑块面积和降低建筑用地斑块聚集度)可以更好地降低城市地表温度,减缓城市热岛效应。  相似文献   

7.
叶面积指数Leaf Area Index (LAI)作为植被生物量指标之一,耕作区LAI不仅能反映作物的长势动态,且与农业生态、作物产量密切相关。本文通过对2001—2017年中国农田区域的MODIS-LAI长时序数据进行重建,利用Mann-Kendall检验、变异系数、重心迁移模型等方法分析了中国耕作区LAI的时空变化特征。结果表明:① 中国耕作区LAI在2001—2017年显波动式上升,且与农作物单产相关系数高达0.91;② 不同耕作区季节差异显著,夏季>秋季>春季>冬季,夏季平均为1.54,生长季平均为1.13,秋季平均为0.78,春季平均为0.63,冬季平均为0.31;③ 2001—2012年二熟、三熟区LAI变化平缓,2012年后有上升趋势但未发生明显突变;一熟区2006年之前处于平稳上升状态,2006年之后发生突变上升趋势显著;④ 研究时段内我国长江以北的耕作区LAI变异程度较为突出,最高达4.12; 农田面积重心经历了先向西南迁移,后再向西北迁移过程,农田生长季LAI重心相对于农田面积重心变幅较大,经历了南北波动式向西部迁移过程,迁移距离分别为82.78 km、90.53 km。  相似文献   

8.
基于地表能量平衡的厦门岛城市功能区人为热排放分析   总被引:2,自引:0,他引:2  
人为热排放不仅是城市热岛形成的重要因子,而且是与能源消耗密切相关的指标,对其大小和变化特征进行分析有利于减缓城市热岛与节能减排。本文以厦门岛为研究区,利用2009年多时相的Landsat TM影像和地表能量平衡模型反演出不同季节的人为热排放,在此基础上结合IKONOS影像解译的城市功能区,分析不同类型城市功能区人为热排放的时空变化特征。结果表明:不同类型城市功能区的人为热排放均在夏季达到最大,春季最小;工业区的人为热排放一直高于其他类型的城市功能区;工业区人为热排放高值区主要集中厦门岛西部传统的重点工业区,交通区人为热排放高值区的空间分布与厦门岛“三纵四横”的交通干线分布格局相吻合,居住区人为热排放高值区主要集中在旧城区,商业及公共设施区人为热排放高值区主要集中在单体建筑大的商圈和公共设施;总体上厦门岛西部的人为热排放比东部要高。这种时空分布的差异性与用地类型、人口数量与经济发展程度密切相关,而且建筑物的密度、高度和下垫面的材料通过影响其他地表通量来改变人为热排放的大小。通过分析不同城市功能区人为热排放的时空变化特征,可以从更微观的角度理解城市热环境和能源利用现状,为促进城市可持续发展提供理论依据。  相似文献   

9.
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a ’Southern Flood and Northern Drought’ pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a ’Northern Flood and Southern Drought’ pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the ’Silk Road’ teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.  相似文献   

10.
Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle. China is believed to be an increasing atmospheric mercury emission source. However,only a few measurements of mercury,to our knowledge,have been done in ambient air over China. The highly-time resolved atmospheric mercury concen-trations have been measured at Moxi Base Station (102°72′E 29°92′N,1640 m asl) of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences (CAS) from May 2005 to June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A). Measurements were carried out with a time resolution of every 15 minutes. The overall average total gaseous mercury (TGM) covering the measurement periods was 4±1.38 ng·m^-3 (N=57310),which is higher than the global background level of approximately 1.5~2.0 ng·m^-3. The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise. The presence of diurnal TGM peaks during spring and summer was found earlier than that during autumn and winter. When divided seasonally,it was found that the concentrations of TGM were highest in winter with 6.13 ± 1.78 ng·m^-3 and lowest in summer with 3.17 ± 0.67 ng·m^-3. There were no significant differences in TGM among wind sectors during each season. Whereas Hg generally exhibited significant correlations with the parameters,such as temperature,saturated vapor pressure,precipitation,ultraviolet radiation (UV) and atmospheric pressure at the whole measurement stage,and t  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号