首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
基于1991-2013年呼伦贝尔市汛期(6-8月)16站逐小时降水资料,分别定义各站点小时降水量的短时强降水阈值,同时利用经验正交函数(EOF)分析方法揭示呼伦贝尔市短时强降水变化特征。分析结果表明:短时强降水阈值、强降水事件以及汛期年平均总降水量和强降水雨强均呈现自西向东部偏南方向递增的空间分布,最强中心位于东南部阿荣旗,其形成与地形关系密切。短时强降水占汛期总降水量百分比低于1/5,短时强降水发生频率最低的地区出现84.2mm/h的强降水事件。短时强降水事件具有明显年代际变化, 21世纪以来,短时强降水事件发生频率表现增加趋势,空间分布表现为自东北向西南方向传播。7月下旬是短时强降水事件频发的时段。短时强降水有明显日变化特征,主峰出现在17时。EOF分析结果显示短时强降水事件在空间上表现出全市强降水具有同步性以及南部和北部地区反相位的特征。  相似文献   

2.
根据1962—2013年清远市7个地面气象观测站逐日有效降水资料,对极端强降水变化的时空分布特征及变化趋势进行分析。分析表明:清远市极端强降水的阈值、总量和强度的分布呈东南向西北逐渐减少、频数呈西北向东南逐渐减少。阈值佛冈呈减少趋势,其余测站呈增加趋势;总量、频数和强度在南部站呈减少趋势、北部站则呈增加趋势。总量和频数在年变化上呈减少趋势,强度呈增加趋势。极端降水主要集中在4—9月,5—6月最为集中。总量、频数和强度都在20世纪90年代初出现突变现象,总量和强度呈增大、频数呈显著减少的趋势。极端强降水以持续1 d为主;21世纪后,持续1 d的极端强降水事件频数呈明显减少趋势。  相似文献   

3.
利用西藏地区26个气象观测站1971 2010年逐日雷暴资料,采用REOF检验等统计方法分析了全球气候变化背景下西藏雷暴事件的时空分布特征。结果表明,随着全球气候变化日益加剧,近40年西藏雷暴事件存在4个异常空间型,即:西部型、北部型、中部型和东部型,且这4个空间型雷暴事件以0.3~9.0次·(10a)-1的速率在减少,其中,中部和东部型减少趋势尤为显著。西藏雷暴出现频数存在13年和22年两个显著周期,20世纪70年代和90年代为雷暴高发期,目前正处于雷暴低发期。  相似文献   

4.
近40年西藏地区雷暴事件的时空变化特征   总被引:1,自引:0,他引:1  
利用西藏地区26个气象观测站1971 2010年逐日雷暴资料,采用REOF检验等统计方法分析了全球气候变化背景下西藏雷暴事件的时空分布特征。结果表明,随着全球气候变化日益加剧,近40年西藏雷暴事件存在4个异常空间型,即:西部型、北部型、中部型和东部型,且这4个空间型雷暴事件以0.3~9.0次·(10a)-1的速率在减少,其中,中部和东部型减少趋势尤为显著。西藏雷暴出现频数存在13年和22年两个显著周期,20世纪70年代和90年代为雷暴高发期,目前正处于雷暴低发期。  相似文献   

5.
利用江西省89个测站1998—2013年汛期(3—9月)逐小时降水量资料,定义局地短时强降水过程,并对局地短时强降水的时空间分布进行了分析;利用常规观测资料基于天气学方法,对局地短时强降水进行天气学分类,统计了不同类型短时强降水的时空分布特征。结果表明:1)江西省汛期局地短时强降水天气主要集中在5—8月,8月出现的次数最频繁。局地短时强降水集中出现在武夷山以东的鹰潭和上饶南部、抚州东部;其次是在九岭山脉以南的宜春北部到南昌一带及环鄱阳湖地区,以及罗霄山脉以东的吉安西南部和赣州西部。2)4—8月局地短时强降水过程呈逐月增多趋势。4月的空间分布为东北多、西南少,集中在江西省北部和中东部;5月强降水高频带明显南移;6月与4月很相似但更为集中;7月,上饶东北部、景德镇、赣州市区的短时强降水逐渐增多;8月,除了江西省最北部和最南部外,全省出现强降水的概率比较均匀。3)根据影响系统的不同,将局地短时强降水分为4类。其中,低槽类出现最多,占50.3%,热带系统类占23.0%,副热带高压控制类占13.7%,副热带高压边缘类占9.9%。  相似文献   

6.
李晓娟  简茂球  方一川  罗文 《气象》2012,38(11):1339-1347
利用实测降水量资料研究了广东前汛期大到暴雨频数的时空分布特征,分析结果表明:广东前汛期大到暴雨频数与同期雨量的空间分布具有很好的一致性,基本可以表征前汛期的旱涝程度,通过REOF可将其分为4个区:粤东区、珠江三角洲区、粤西北区和雷州半岛区;前汛期大到暴雨频数的年际变化明显,主要有准2~3a、6~10a周期,1985年后各区周期均有缩短趋势,以4~5a短周期为主;珠江三角洲及以南地区前汛期大到暴雨频数有增多趋势,其中珠江三角洲中心区域增多显著,6月份变化最明显。  相似文献   

7.
近45年长江中下游地区汛期极端强降水事件分析   总被引:5,自引:1,他引:5  
张天宇  程炳岩  刘晓冉 《气象》2007,33(10):80-87
利用长江中下游地区1960—2004年78个台站汛期(4—9月)逐日降水资料,首先定义了不同台站的极端强降水阈值,然后统计出了不同台站近45年逐年汛期极端强降水事件的发生频次,并进行了时空分布特征分析。结果表明:长江中下游汛期极端强降水事件发生频次的多寡很大程度上影响着汛期总降水量的多少。一致性异常分布特征是长江中下游地区汛期极端强降水事件发生频次的最主要空间模态;长江中下游地区汛期极端强降水事件发生频次的空间分布可分为5个主要区域。通过最大熵谱估计分析表明,Ⅰ区显著周期为2~4年;Ⅱ区和Ⅳ区的主要显著周期是基本一致的,显著周期为2~3年和6.3年;Ⅲ区显著周期为14.7年的年代际变化;Ⅴ区显著周期为22年的年代际变化和4~5年的年际变化。各分区代表站中岳阳(Ⅰ区)表现为很显著的增长趋势,10年增长率为1.0次;南岳(Ⅱ区)和南京(Ⅳ区)增长趋势相对较弱;衢州(Ⅴ区)增长趋势相对最弱;而洪家(Ⅲ区)近45年来汛期极端强降水事件发生频次则表现为很弱的减少趋势。  相似文献   

8.
贵州省汛期短时降水时空特征分析   总被引:10,自引:2,他引:8  
彭芳  吴古会  杜小玲 《气象》2012,38(3):307-313
利用贵州区域84测站1991—2009年汛期(4—9月)逐小时降水量资料,分别定义各站点的小时降水量的强降水阈值。阈值的分布有两个高值中心,最强中心在西南部望谟站,西北部的强降水阈值较低。同时利用各站点阈值统计19年不同月份的强降水事件频数,其分布显示:4月份东部和中部偏南地区频数较高,5月份频数高值区呈东北—西南向,随后几个月逐渐向西北推进。4—6月事件频数逐渐增大,7月维持,8—9月开始减少。各月强降水事件发生时次统计表明:一天中有三个相对高值时段,23:00—02:00、05:00—08:00和17:00—20:00,而白天强降水事件很少。短时强降水事件发生时次的空间分布表明,西北部的强降水事件多数发生在傍晚到23:00,中部的强降水集中在23:00—02:00,东南部在05:00—08:00。  相似文献   

9.
马慧  陈桢华  徐宁军  王谦谦 《高原气象》2010,29(6):1507-1513
利用国家气候中心整编的1951—2008年中国160站的月平均气温资料,选出华南地区10个代表站,分析了华南南部前汛期气温异常的季节、年际和年代际变化的时空特征。结果表明,58年的温度变化总趋势是增加的,1950—1990年代初为相对低温期,1990年代中期开始温度明显升高。华南南部前汛期气温异常存在2,4和5年的年际周期和12年和19年的年代际周期。在研究华南南部前汛期气温异常的基础上,还分析了华南南部前汛期气温与阿拉伯海和孟加拉湾北部海温的关系,发现前一年10~11月阿拉伯海和孟加拉湾北部海域存在一个与次年华南南部前汛期气温有较好正相关的关键区(85°~97°E,5°~16°N)(简称关键区),当前一年10~11月关键区海温异常偏高(偏低),次年华南南部前汛期气温偏高(偏低),关键区海温异常和华南南部前汛期气温异常都具有准2年、准5年和准12年的振荡周期,冷、暖水年次年的华南南部前汛期环流形势存在很大的差异。  相似文献   

10.
刘丽  陶云 《干旱气象》2012,(1):15-20
利用云南省1961~2008年94个站点逐日降水资料,根据百分位法定义了不同站点的极端强降水阈值,应用EOF、线性倾向率和周期分析方法,对云南极端强降水事件频数进行了时空分布特征诊断。结果表明:云南省汛期极端强降水阈值的空间分布呈西北至东南逐渐增大的分布趋势;以百分位法定义的极端强降水事件频数和大雨及以上强降水频数的空...  相似文献   

11.
近30年西藏地区雷暴日数的气候分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用西藏地区1980~2009年逐月雷暴日数观测数据,分析了近30a来西藏地区雷暴的时空分布特征以及影响雷暴天气的气象因子。结果表明:(1)雷暴天气主要发生在西藏那曲地区,并由该区域向西南、东南部逐渐递减,且雷暴天气发生的中心位置随着季节有所差别。夏季雷暴日数最多,其次是秋季和春季,冬季雷暴日数最少。(2)近30年来年或各季节的雷暴日数基本呈现减少的趋势,尤其以2000年之后最为显著。雷暴日数以2003年为突变点,开始急剧减少。(3)雷暴日数和平均气温呈负相关,与风速、相对湿度、降水量呈正相关,气温升高可能是导致雷暴日数减少的主要气候影响因子。   相似文献   

12.
利用山东省117个测站19662010年夏季逐日降水资料集,分析夏季极端降水的时空变化特征。结果表明:1)夏季极端降水频次高值区位于鲁中及鲁东南等地,低值区主要位于鲁西北地区。极端降水强度高值区位于鲁东南地区,低值区主要位于鲁中及其北部地区。全省大部分地区极端降水频次和强度都存在增加趋势,尤其鲁中及其以南地区增加趋势明显。2)夏季极端降水可大致划分为鲁西北、鲁西南、鲁中及其北部、鲁东南、半岛5个区域,各区域极端降水频次和强度以准2~3 a的周期波动为主,鲁西北、鲁西南及半岛地区的极端降水频次和强度在年代际尺度上呈现出反向变化特征。各区域极端降水频次的长期趋势均为增加,而极端降水强度表现为鲁西北地区先增加后减小、其他地区先减小后增加的长期趋势。3)鲁西北、鲁中及其北部、半岛3个区域的夏季极端降水主要集中在7月下旬和8月上中旬,而鲁西南和鲁东南地区极端降水主要集中在7月中下旬。鲁西北和半岛地区极端降水开始时间有推迟的趋势,其他地区的为提前趋势。鲁西北和鲁西南地区的结束时间有提前趋势,其他地区的则为推迟趋势,但提前和推迟的趋势变化均比较微弱。  相似文献   

13.
马晓波 《高原气象》1993,12(4):450-457
本文利用蒙古25个台站的52年逐月降水量资料,研究了蒙古旱变化和降水趋势。结果表明:蒙古平均年降水量为216.1mm,分布由南向北增加,东西部少,中部多,南部和西部为干旱区,中部和东部为半干旱区,与我国干旱半干旱区是一个整体,降水主要集中在夏季;年降水量变率为15.6%-38.0%。蒙古旱涝都很频繁,旱的频率高于涝的频率,而大涝的频率是大旱的两倍。年降水量服从正态分布,并有准3年和11-14年周期  相似文献   

14.
利用1974-2012年保定19个气象台站逐日降水资料,采用线性趋势分析、Morlet小波变换、Mann-Kendall法和功率谱等方法,对保定市暴雨发生站次数的时间和空间分布特征及变化进行分析。结果表明:保定地区暴雨年平均发生站次数北多南少,暴雨主要集中在东北部;汛期(6-8月)是暴雨出现的主要时段,最集中的时段则出现在主汛期(7-8月);暴雨站次数从5月中旬开始呈现缓慢增加趋势,6月下旬猛增,7月下旬达到最高值;近39 a来,年暴雨发生站次数整体呈下降趋势,尤其是8月下降趋势最为明显。保定主汛期暴雨发生站次数在20世纪80年代中期存在着由少到多的突变,90年代末期存在着由多到少的突变  相似文献   

15.
东北地区降水日数、强度和持续时间的年代际变化   总被引:20,自引:4,他引:20       下载免费PDF全文
利用93站1951—2002年逐日降水资料,分析了东北地区不同强度降水事件的时空演变特征及其对旱涝的影响。结果表明:52年来,东北地区小雨事件对年降水量的贡献率呈显著增加趋势,中雨的贡献率略为减少,大雨和暴雨的贡献率变化不大;东北年总雨日减少趋势非常明显,雨日的减少主要体现在小雨日数的减少;年降水强度表现为明显的增强趋势,主要体现为小雨和暴雨强度增强;20世纪80年代中期之前多小雨事件,80年代中期之后多中雨以上强度的降水,特别是90年代中期之后多暴雨事件。在显著变暖的20世纪90年代,降水日数明显减少,但暴雨日数基本不变,强度明显增强。对东北地区降水量、降水变幅、降水事件的变化特征分析表明:该区域降水有向不均衡、极端化发展的趋势,旱涝灾害也有加重趋势。  相似文献   

16.
Measuring rainfall from space appears to be the only cost effective and viable means in estimating regional precipitation over the Tibet, and the satellite rainfall products are essential to hydrological and agricultural modeling. A long-standing problem in the meteorological and hydrological studies is that there is only a sparse raingauge network representing the spatial distribution of precipitation and its quantity on small scales over the Tibet. Therefore, satellite derived quantitative precipitation estimates are extremely useful for obtaining rainfall patterns that can be used by hydrological models to produce forecasts of river discharge and to delineate the flood hazard area. In this paper, validation of the US National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) RFE (rainfall estimate) 2.0 data was made by using daily rainfall observations at 11 weather stations over different climate zones from southeast to northwest of the Tibet during the rainy season from 1 June to 30 September 2005 and 2006. Analysis on the time series of daily rainfall of RFE-CPC and observed data in different climate zones reveals that the mean correlation coefficients between satellite estimated and observed rainfall is 0.74. Only at Pali and Nielamu stations located in the southern brink of the Tibet along the Himalayan Mountains, are the correlation coefficients less than 0.62. In addition, continuous validations show that the RFE performed well in different climate zones, with considerably low mean error (ME) and root mean square error (RMSE) scores except at Nielamu station along the Himalayan range. Likewise, for the dichotomous validation, at most stations over the Tibet, the probability of detection (POD) values is above 73% while the false alarm rate (FAR) is between 1% and 12%. Overall, NOAA CPC RFE 2.0 products performed well in the estimation and monitoring of rainfall over the Tibet and can be used to analyze the precipitation pattern, produce discharge forecast, and delineate the flood hazard area.  相似文献   

17.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

18.
杜勤博 《广东气象》2012,34(3):10-12
根据潮阳气象站1959~2011年逐日降水资料,研究了近53年来潮阳区降水的变化特征,结果表明,前汛期和后汛期各个降水指数变化规律存在很大区别:(1)前汛期降水量、降水强度、降水频率和暴雨日数均呈下降趋势,而后汛期降水量、降水强度和暴雨日数呈上升趋势;(2)前汛期存在8年和3年的短周期,后汛期周期变化不明显;(3)前汛期极端降水量发生突变,分别是1965年和1985年,20世纪90年代后极端降水量呈明显下降趋势,而后汛期极端降水量在20世纪90年代后呈上升趋势.  相似文献   

19.
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960s and 1980s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.  相似文献   

20.
利用石家庄地区5个代表站1961-2014年的逐日降水资料,采用多种统计分析方法,分析了石家庄地区降水量的时空变化特征,结果表明石家庄地区年降水量从20世纪70年代开始下降,80年代达到最低,90年代有所增加,但也没有明显的上升趋势,21世纪初又开始下降.20世纪70年代降水量的减少春季和秋季贡献最大,80年代降水量的减少和90年代降水量的增加主要是夏季的贡献.石家庄地区年降水量起伏较大,1963年降水量最多,为1038.4 mm,2014年最少,仅为276.2 mm.近54年石家庄年降水量在波动中呈现下降趋势,线性趋势为-11.0 mm/(10 a),但下降趋势并不明显.石家庄北部年降水量呈上升趋势,市区及东部、南部和西部年降水量均呈下降趋势,变化趋势均不明显.近54年,石家庄春季降水量呈上升趋势,线性趋势为0.9 mm/(10 a),夏季、秋季和冬季降水量均呈下降趋势,线性趋势分别为-11.9,-1.1和-0.3 mm/(10 a),上升或下降趋势均不明显.夏季降水减少是导致石家庄年降水减少的主要原因.石家庄四季降水量变化趋势的空间分布具有明显的季节特征和区域特征.石家庄四季降水量均存在显著周期变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号