首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
雷暴起电和放电物理过程在WRF模式中的耦合及初步检验   总被引:10,自引:1,他引:9  
徐良韬  张义军  王飞  郑栋 《大气科学》2012,36(5):1041-1052
本文将雷暴云的起电、放电物理过程引入中尺度的WRF (Weather Research and Forecasting)模式,并对超级单体和飑线过程进行了模拟研究.起电过程在Milbrandt双参数微物理方案中写入,包含霰、雹与冰晶、雪之间的非感应起电机制,以及霰、雹与云滴之间的感应起电机制.放电参数化方案只考虑了闪电...  相似文献   

2.
利用已有的二维雷暴云起、放电模式模拟了一次雷暴天气,并通过敏感性试验研究了冰核浓度变化对雷暴云动力、微物理及电过程的影响。结果表明:随着大气冰核浓度的增加,雷暴云发展提前,上升气流速度和下沉气流速度均呈现降低的趋势。大气冰核浓度提升有利于异质核化过程增强,冰晶在高温区大量生成,而同质核化过程被抑制,因此冰晶整体含量降低,引起低温区中霰粒含量降低和高温区中霰粒尺度降低。在非感应起电过程中,正极性非感应起电率逐渐减小,负极性非感应起电率逐渐增大。由于液态水含量随大气冰核浓度的增加逐渐降低,高温度冰晶携带电荷的极性由负转变为正的时间有所提前。在感应起电过程中,由于霰粒尺度减小及云滴的快速消耗,感应起电率极值逐渐降低。冰晶优先在高温区生成而带负电,不同大气冰核浓度下的雷暴云空间电荷结构在雷暴云发展初期均呈现负的偶极性电荷结构。在雷暴云旺盛期,随着冰核浓度增加,空间电荷结构由三极性转变为复杂四极性。在雷暴云消散阶段不同个例均呈现偶极性电荷结构,且随着冰核浓度的增加电荷密度值逐渐减小。  相似文献   

3.
利用三维雷暴云动力电耦合模式,对无风、弱风、中等强度风和较强风这四种不同中低层水平风速情况下雷暴的发展特征进行了敏感性试验。模拟结果表明,随着中低层水平风速增大,雷暴云内粒子生长受到抑制,云内起电过程将变得缓慢,起电区域发生转移,更长的起电时间使云内产生更大的电场、发生更剧烈的放电过程,但若风速过大,云内电场将被严重抑制而不发生放电,中等强度风最有利于闪电发生。中低层水平风速在一定范围内增长将使降水增多,但若风速过大,降水将减少。中低层水平风对闪电和降水影响明显,在对雷暴云闪电和降水的研究中应当综合考虑其对云内动力、微物理过程的影响。  相似文献   

4.
雷暴微物理过程对电活动影响的数值模拟研究   总被引:2,自引:0,他引:2  
在一维时变雷暴云起电放电模式的基础上,分别利用对流降水试验合作计划(CCOPE)和夏季雷暴放电与降水研究(STEPS)一次雷暴的实测探空资料进行了初步模拟,并通过敏感性试验研究了软雹垂直通量、地面温度和反转温度对雷暴云起电放电过程的影响.模式考虑的冰晶生成机制为Fletcher 和H-M冰晶生成机制.对比CCOPE和STEPS雷暴个例的模拟与观测结果,发现垂直电场正负极大值出现的位置与实测结果较接近,但电场极值差异较大,模拟结果明显大于实测结果.敏感性试验表明,当软雹垂直通量增加时,雷暴云首次放电时间降低,而单位时间内发生闪电的次数(闪频)随之增大.当地面温度较高时,雷暴云中负电荷的垂直厚度较小,雷暴云的正、负电荷最大密度较大.当反转温度较低时,冰晶所带负电荷的垂直范围较大.在敏感性试验中,当模式中地面温度为32℃,反转温度<-26℃时,雷暴云出现反极性电荷结构.该模式能较直观地模拟雷暴发展过程中的电荷结构和电场时空分布等.  相似文献   

5.
大气环境层结对闪电活动影响的模拟研究   总被引:6,自引:0,他引:6  
郑栋  张义军  马明  孟青  吕伟涛 《气象学报》2007,65(4):622-632
利用一个二维面对称雷暴云起电、放电模式,选取了北京地区3次雷暴过程的环境层结,计算并讨论了不同层结条件下雷暴中动力、微物理过程及其对起电、放电活动的影响。结果表明,上升速度和水汽条件是影响雷暴动力、微物理过程和闪电活动的最重要因子。上升速度的大小决定了雷暴发展到成熟的时间和雷暴的强弱,较强的上升气流有利于雷暴云在较短时间内达到较大的高度。而持续的上升气流和充足的水汽有利于雷暴的成熟期延长从而增强闪电活动。较强的上升速度和充足的水汽可以产生更多的对闪电起电、放电有直接影响的冰相物并能使其持续生成,从而形成较大的电荷浓度。较强的上升速度和不利的水汽条件也可以在某时形成较大的冰相物浓度,但冰相物难以持续生成。而较弱的上升速度和充足的水汽则容易形成暖云过程,对冰相物的生成也有不利影响。上升速度和水汽相互影响,又共同受到环境层结的支配。大气低层潮湿、中层湿度适中,较大的不稳定能量和一定量的对流抑制能量将有利于强闪电活动的发生。表现在大气不稳定参数的取值上,对流性稳定度指数的值小于-10℃(负值表示不稳定),对流有效位能值在1000 J/kg以上,对流抑制能量大于40 J/kg,700 hPa相当位温在340 K以上,700—400 hPa中层平均湿度在35%—85%,有利于强闪电活动的发生。  相似文献   

6.
为了研究风暴中的动力、微物理和电过程三者间的相互作用 ,在已有的工作基础上 ,建立了一个三维强风暴动力 电耦合数值模式。模式中将云中水物质分为水汽、云水、雨水、冰晶、雪、霰和雹 7类 ,各种粒子采用双变参数谱。考虑了详细的起电过程 ,它们包括扩散、电导、感应和非感应以及次生冰晶起电机制。此外 ,在模式中加入了云内放电参数化过程和云顶处屏蔽电荷层形成的参数化方案用以研究整个雷暴生命史内的电活动特征。最后利用CCOPE(CooperativeConvectivePrecipitationExperiment)计划中 1981年 7月 19日的风暴资料对模式的性能进行了验证 ,模拟结果显示此模式可以较好地描述风暴中动力、微物理和电结构的发展演变过程。  相似文献   

7.
耦合气溶胶模块的雷暴云起电模式   总被引:3,自引:0,他引:3  
利用耦合气溶胶模块的雷暴云起电新模式,结合SEET个例,对比分析了耦合气溶胶模块前后云内各水成物最大比含水量和空间电荷结构的时间演变,并初步探讨了气溶胶浓度和谱分布对雷暴云电荷总量的影响.结果表明,在250 m分辨率下,耦合气溶胶模块后对雷暴云中的动力和微物理过程仍具有较好的模拟能力.当气溶胶浓度增大时,雷暴云内电荷总量也随之增大,其中大核粒子对雷暴云电荷量的生成有相当大的贡献.  相似文献   

8.
三维强风暴动力-电耦合数值模拟研究Ⅱ:电结构形成机制   总被引:1,自引:0,他引:1  
文中利用文献 [1]所建立的三维强风暴动力 -电耦合模式模拟研究了CCOPE(CooperativeConvectivePrecipita tionExperiment)计划 1981年 7月 19日的一次强雷暴过程 ,分析了该雷暴云中电结构的时空演变特征和形成机制 ,讨论了起电、降水和对流三者间的相互关系。结果表明 ,感应和非感应起电机制是雷暴云电结构形成的主要机制 ,冰相物的出现大大增强了雷暴中的起电过程。雷暴云中最大电场出现的时间与最大固态降水强度的出现基本同时 ,但比最大液态降水强度和最大上升速度出现的时间略有滞后 ,云中最大上升速度与最大液态降水强度基本同时出现。云中最大电场出现的时段正好是最大上升速度达到最大值后回落的阶段。雷暴云中起电活动的强弱还受云中微物理过程的发展和冰相物出现时间的影响 ,对流运动与起电过程的关系主要体现在对流运动影响着云中的凝结和冻结过程 ,从而与冰相物出现的时间有关。而仅仅依靠对流运动对正负离子的输送机制不可能产生云中接近放电的临界电场。  相似文献   

9.
将云滴冻结方案植入已有的二维雷暴云起、放电模式,结合一次山地雷暴个例,探讨了气溶胶浓度对雷暴云微物理过程、起电以及空间电荷结构的影响。结果表明:气溶胶浓度增加,云滴数目增多,尺度降低,雨滴含量减少;云滴冻结导致冰晶在低温区快速生长,冰晶数浓度增加,尺度减小,当气溶胶浓度高于1000 cm-3后小冰晶难以增长成大尺度的霰粒子,因此霰粒子数浓度先增加后急剧减少。此外,气溶胶浓度的大小不会影响雷暴云的电荷结构特征,但会对云内的起电强度产生明显的作用:当气溶胶浓度较低时,增加气溶胶浓度,更多的冰晶和霰粒子发生碰撞使得云内起电过程增强,空间电荷密度增加;当气溶胶浓度高于1000 cm-3后,少量的霰粒子和小冰晶的出现抑制了非感应起电过程,导致电荷密度降低。  相似文献   

10.
采用耦合了Saunders和Takahashi两种非感应起电参数化方案的RAMS(Regional Atmospheric Modeling System)模式,对重庆地区一次雷暴过程进行模拟,对比分析了两种起电参数化方案下,电荷开始分离时和雷暴云发展到成熟阶段时的水成物粒子的分布、所带电荷密度以及雷暴云的电荷结构分布。模拟结果表明,在Saunders起电参数化方案下,雷暴云的电荷结构从起电到放电都呈现偶极性特征,而在Takahashi参数化方案下,雷暴云的电荷结构则由反偶极性发展成正偶极性。为研究CCN(cloud condensation nuclei)对雷暴云的影响,本文进行了两组敏感性试验,随着云滴初始数浓度增加,雷暴云的电荷结构没有发生极性翻转,但雷暴云中电荷量增加,电荷分布区域变大,有利于闪电发生。在Saunders起电参数化方案下,当云滴初始数浓度大于2 000 cm-3时,电荷量变小。通过分析微物理量场和微物理过程发现,随着云滴初始数浓度增加,冰相粒子质量混合比增加,在Saunders起电参数化方案下,当云滴初始数浓度大于2 000 cm-3时,霰粒子质量混合比减小。验证了CCN的变化能影响云的微物理过程,从而影响雷暴云的电荷分布以及闪电的发生,尤其是冰相物质的变化显著影响了雷暴云的起电过程。  相似文献   

11.
Electrification and simple discharge schemes are coupled into a 3D Regional Atmospheric Model System (RAMS) as microphysical parameterizations, in accordance with electrical experiment results. The dynamics, microphysics, and electrifi- cation components are fully integrated into the RAMS model, and the inductive and non-inductive electrification mechanisms are considered in the charging process. The results indicate that the thunderstorm mainly had a normal tripole charge structure. The simulated charge structure and lightning frequency are basically consistent with observations of the lightning radiation source distribution. The non-inductive charging mechanism contributed to the electrification during the whole lifetime of the thunderstorm, while the inductive electrification mechanism played a significant role in the development period and the mature stage when the electric field reached a large value. The charge structure in the convective region and the rearward region are analyzed, showing that the charge density in the convective region was double that in the rearward region.  相似文献   

12.
强雷暴云中电荷多层分布与形成过程的三维数值模拟研究   总被引:13,自引:5,他引:8  
周志敏  郭学良 《大气科学》2009,33(3):600-620
通过建立云物理耦合电过程的冰粒子分档模式, 对北京一次强雷暴天气的云中空间电荷结构分布、 形成机制及放电过程进行了模拟分析研究。结果表明: (1) 云水含量主要通过感应起电来影响云水、 霰粒子之间的电荷转移, 然后再影响空间电荷分布。而包含了雨水后的液水含量主要通过非感应起电在不同含水量条件下的起电机制影响霰粒子同雪粒子 (或冰晶) 碰撞后转移电荷的极性与大小, 从而影响空间电荷结构。 (2) 微物理过程的不均匀性将导致水成物含水量源汇项的不均匀性。而这种不均匀性首先会使得水成物在不同垂直剖面上的分布也不均匀, 从而使得感应、 非感应起电变得更复杂。源汇项的不均匀性还会导致水成物之间因质量转移而产生的电荷转移也不均匀。 (3) 强的上升气流将冰相物携带到较高处, 从而使得水成物间发生电荷转移的高度也比较高。雪粒子在强上升气流上部及两侧区域出现多个含量中心, 霰粒子含量分布相对均匀, 而质量中心向背风侧倾斜。因此, 非感应起电过程主要发生在背风侧的辐散区域, 从而导致空间电荷也主要分布在该区域。强上升气流使得冰相水成物在不同区域出现含量中心, 使得同一冰相物在不同区域携带不同电荷 (尤其是在强风暴的成熟期), 从而使得空间电荷易于出现多层结构。 (4) 由于放电会改变空间电荷结构, 放电通道中的感应电荷会重新分配到各个水成物表面, 所以在微物理过程和动力过程等作用下, 在水成物质量转移过程中发生的电荷转移将会更加复杂, 从而使得空间电荷浓度分布更加复杂。但是该作用的重要性还需要进一步的研究。以上因子均是造成空间电荷多层分布的重要原因。  相似文献   

13.
雷电研究的回顾和进展   总被引:23,自引:19,他引:23       下载免费PDF全文
该文从雷电定位技术的研发、北京地区闪电特征和时空分布、闪电活动与强对流天气过程、雷电预警预报研究、雷电物理过程研究和雷暴起电放电数值模式研究6个方面综述了雷电研究的一些结果和近期的研究进展。通过对雷电多方面的研究, 对雷电放电特征有了较系统地了解, 特别是对北京地区的雷电时空分布特征有了较清晰地认识; 在雷电预警预报技术和方法、雷电物理过程等方面也取得了一些重要进展。但由于雷电发生的时空随机性和瞬时性, 对闪电放电物理过程的观测试验和理论研究十分困难, 目前对我国闪电活动规律的认识也仍然不够全面。因此需要对雷暴内动力、微物理和起电放电过程及它们之间的相关性开展深入和长期的基础研究, 加深对雷电发生发展特征的认识和理解, 这将为雷电预警预报以及雷电监测资料在强对流天气过程的监测预警中发挥更重要的作用提供理论基础; 而在雷电激发和传输研究的基础上, 开展地闪连接过程和不同频段雷电电磁辐射对电子设备的破坏效应等雷电成灾机理研究, 将为雷电防护技术的提高提供科技支撑。  相似文献   

14.
在三维强风暴动力—电耦合数值模式中引入非感应起电参数化方案、感应起电参数化方案以及放电参数化方案,对湖北宜昌2014年6月19日一次闪电过程中雷暴云电荷结构和放电特征进行了模拟分析。模拟结果表明,当云内粒子增多、增大,大部分霰粒子逐渐降落到中低层,上部正电荷区减小,底部正电荷堆范围开始扩大,中部负电荷区和底部正电荷区成为主要的起电区域,这种底部正电荷区较厚的三极性电荷结构不利于地闪的产生。在粒子带电分析中,霰与冰晶粒子携带的电荷量均大于云滴,说明霰与冰晶之间非感应碰撞是云中主要的起电过程。虽然云滴的电荷量较小,但霰与云滴之间感应碰撞的作用不可忽视。结合电荷结构的分布,发现底部正电荷堆的垂直分布高度与霰粒子、云滴的电荷浓度的分布有关,且霰与云滴电荷浓度的累积区与底部正电荷堆相一致。  相似文献   

15.
黄丽萍  管兆勇  陈德辉 《大气科学》2008,32(6):1341-1351
雷暴数值预报的实际应用离我们还有多远?本文对此进行了尝试, 即利用一个复杂的高分辨率中尺度气象模式驱动一个三维雷电模式, 在只采用常规气象观测资料的条件下, 对北京的一次实际雷暴过程进行模拟试验, 分析了雷暴云的宏观动力、 微物理过程及电结构的时空变化特征以及其可能的相互作用机制。结果表明: 利用高分辨中尺度模式预报出的三维气象场作为雷电模式的初始场, 完全可以不需添加虚假的扰动来触发雷暴云的发展, 高分辨中尺度模式的预报场本身所包含的水平非均匀、 垂直强非静力性及较强的对流不稳定信息足够促发雷暴云的剧烈发展; 用较为真实的三维气象场作为初始场模拟产生的电场分布特征与云微物理分布特征及环境气象要素的分布结构非常协调, 得到的雷暴云的电荷结构特征以及电结构随时间的演变特征更为复杂, 更真实的体现了实际雷暴云本身发展的复杂性, 同时, 模式能够模拟出合理的云闪及正负云地闪, 且模拟的闪电频数随时间发展演变趋势基本与观测实况基本吻合, 从而表现了对雷电天气潜在的预报能力。本次模拟的北京雷暴云在发展过程中, 水物质霰的最大质量比、 最大正电场强度及闪电频数随模拟时间的演变发展趋势非常相似。  相似文献   

16.
为全面了解水汽在气溶胶影响雷暴云电过程中的作用,本研究在已有的二维雷暴云起、放电模式基础上,通过改变相对湿度和气溶胶初始浓度(文中气溶胶浓度均指气溶胶数浓度)进行敏感性数值模拟试验.结果表明:(1)随着气溶胶浓度升高,雷暴云产生更多的小云滴,降水过程受到抑制.而当水汽含量升高时,云滴数浓度的增长速度更快,雨滴数浓度升高...  相似文献   

17.
A new three-dimensional dynamics and electrification coupled model has been developed forinvestigating the characteristics of microphysics,dynamics and electrification insidethunderstorms.This model is basically modified from a three-dimensional,time-dependent,anddual-parameter cloud model originally established in IAP(Institute of Atmospheric Physics)and atwo-dimensional axisymmetric cloud dynamics and electrification coupled model.Primarymodifications to the model include not only the coupling of electrification with dynamical andmicrophysical processes,but also the lightning discharge process and screening layer effect at thecloud top as well.Apart from including a full treatment of small ions with attachment to sixclasses of hydrometeors,the inductive and non-inductive charging mechanisms are more specificallyconsidered.A case simulation of July 19.1981 CCOPE is performed aiming to validate thepotential capability of the model.Comparison between model results and observations reveals thatthe model has the capacity to reproduce many of the observed characteristics of thunderstorms indynamical,microphysical,and electrical aspects.  相似文献   

18.
A new three-dimensional dynamics and electrification coupled model has been developed for investigating the characteristics of microphysics,dynamics and electrification inside thunderstorms.This model is basically modified from a three-dimensional,time-dependent,and dual-parameter cloud model originally established in IAP (Institute of Atmospheric Physics) and a two-dimensional axisymmetric cloud dynamics and electrification coupled model.Primary modifications to the model include not only the coupling of electrification with dynamical and microphysical processes,but also the lightning discharge process and screening layer effect at the cloud top as well.Apart from including a full treatment of small ions with attachment to six classes of hydrometeors,the inductive and non-inductive charging mechanisms are more specifically considered.A case simulation of July 19.1981 CCOPE is performed aiming to validate the potential capability of the model.Comparison between model results and observations reveals that the model has the capacity to reproduce many of the observed characteristics of thunderstorms in dynamical,microphysical,and electrical aspects.  相似文献   

19.
雷暴云不同空间电荷结构数值模拟研究   总被引:36,自引:12,他引:24  
利用一个三维时变双参数动力电耦合模式对决定雷暴云空间电荷结构的三个初始场:反转温度、中心最大扰动位温和扰动区域进行模拟对比研究。结果表明,选取不同的参数值,雷暴云电结构有很大差异,从而解释了在不同地区、季节、强度的雷暴云中所观测到得不同的空间电荷结构的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号