首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several organic molecules have now been detected in the coma of Hale–Bopp. These species may either emanate from the nucleus, or, as has been suggested by Bockelée–Morvan et al., could be synthesized in the coma. We have modelled the gas phase chemistry which occurred in the coma of Hale–Bopp, concentrating on the observed organic molecules HCOOH, HCOOCH3, HC3N and CH3CN. We find that gas phase chemical reactions are unable to synthesize the observed abundances of these molecules, so all these species are most probably present in the nuclear ice. We briefly discuss the implications of this result for the connection between cometary and interstellar ices.  相似文献   

2.
We have investigated the role that energetic hydrogen atoms, produced in cometary comae by the photodissociation of water molecules, could have in driving chemical reactions that are endothermic, or possess activation energy barriers. We have developed a model of the density and energy spectrum of these atoms in the coma and have incorporated a number of reactions driven by fast H atoms into our existing coma model. We find that, in high-activity comets close to the Sun, such reactions are competitive with direct photodissociation as the principal destruction mechanism for molecules with long lifetimes in the solar radiation field. We show that measurements of the CH2OH : CH3O ratio may be used to assess the importance of suprathermal reactions in the coma. We also confirm that these reactions are probably unable to account for the observed HNC : HCN ratios.  相似文献   

3.
Irvine  W. M.  Dickens  J. E.  Lovell  A. J.  Schloerb  F. P.  Senay  M.  Bergin  E. A.  Jewitt  D.  Matthews  H. E. 《Earth, Moon, and Planets》1997,78(1-3):29-35
The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4−3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced insignificant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Wink  J.  Bockelée-Morvan  D.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gérard  E.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Jorda  L. 《Earth, Moon, and Planets》1997,78(1-3):63-63
Comet C/1995 O1 (Hale-Bopp) has been observed on October 5 and 25, 1996 and from March 6 to March 22, 1997 with the Institut de Radioastronomie Millimétrique (IRAM) interferometer at Plateau de Bure (France). Millimetre lines of HCN,HNC, CO, H2CO, CH3OH, H2S, CS and SO were mapped with spatial resolutions of 1.5–3.5 arc sec. These observations allow us to investigate whether these species are released by the nucleus or produced in the coma by extended sources or photo-processes. The brightness distribution of the HCN J (1-0) line is consistent with release from the nucleus. The HNC J (1-0) distribution deviates from that of HCN in the innermost coma, and indicates production of HNC in the coma. This is in agreement with the heliocentric variation of the HNC/HCN ratio (Biver et al., 1997, Science 275, 1915; Irvine et al., 1998, this issue) and formation by chemical reactions (Rodgers and Charnley, 1998, Ap. J. 501, L227; Irvine et al., 1998, Nature 393, 547). There is clear evidence that SO is a photo dissociation product. The observations also confirm that H2CO is mainly produced by an extended source, as first evidenced in comet P/Halley. The contribution of the nucleus to the total H2CO production rate does not exceed 6%. The molecular lines have also been monitored hourly with the five antennas of the interferometer in single-dish mode. The line velocity shifts show aperiodic modulation linked to the nucleus rotation. The amplitude of the modulation differs from one species to another. The periodic modulation seen for the CO J (2-1) line on March 11 suggests that a significant fraction of CO is released continuously night and day by an active source situated at equatorial latitudes on the nucleus surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The attempt to understand the temperature dependence of the HNC/HCN abundance ratio in interstellar clouds has been long standing and indecisive. In this paper we report quantum chemical and dynamical studies of two neutral–neutral reactions thought to be important in the formation of HNC and HCN, respectively – C+NH2→HNC+H, and N+CH2→HCN+H. We find that although these reactions do lead initially to the products suggested by astronomers, there is so much excess energy available in both reactions that the HCN and HNC products are able to undergo efficient isomerization reactions after production. The isomerization leads to near equal production rates of the two isomers, with HNC slightly favoured if there is sufficient rotational excitation. This result has been incorporated into our latest chemical model network of dense interstellar clouds.  相似文献   

6.
We compare images of Comet Hale-Bopp (1995 O1) in HCN and CN taken near perihelion (April 1, 1997) to determine the origin of CN in comets. We imaged the J=1→0 transition of HCN at λ=3 mm with the BIMA Array. Data from two weeks around perihelion were summed within four phase bins based on the rotational period of the comet. This increases both the signal-to-noise ratio and the u-v coverage while decreasing the smearing of the spatial features. The similarly phased narrowband CN images were taken at Lowell Observatory within the same range of dates as the HCN images. We find that there is a better correlation between HCN and CN than between HCN and the optically dominant dust. If the CN in jets does have a dust source it would have to have a very low albedo and/or small particle size. The production rates are consistent with HCN being a primary parent of CN, although there are discrepancies between the HCN destruction scalelength and the CN production scalelength which we discuss.  相似文献   

7.
The molecular phase of the ISM constitutes the main source of fuel for the activity in starburst and AGNs. The physical conditions and chemical constitution of the molecular gas will change with, and respond to, the evolution of the activity. This paper includes a short discussion of the 12CO/13CO 1–0 line intensity ratio as a diagnostic tool of the molecular gas properties of luminous galaxies – paired with examples of high-resolution studies of how the line ratio varies within galaxies. A possible connection between the OH megamasers and galaxies with unusually high 12CO/13CO 1–0 line intensity ratios are also briefly discussed.The relative intensities of the dense gas tracers HNC, HCN, HCO+ and CN are a result of both chemistry and starburst evolution. The discussion on the interpretation of HNC 1–0 emission includes the importance of ion-neutral chemistry in a luminous starburst region. Finally, simple cartoon ISM models and how they can be applied to LIRGs and ULIRGs, are presented.  相似文献   

8.
Cometary outbursts, sudden increases in luminosity have not been clearly explained so far and their source is still a mystery. Various possible mechanisms as a source of cometary outbursts at large distances from the Sun have been considered. It has been stated that plausible mechanisms are the polymerization of HCN and the amorphous water ice transformation combined with electrostatic destruction of cometary grains in the head of the comet. The calculations have been carried out for a large range of cometary parameters and it has been shown that the proposed scenario of the outburst gives a jump in the comet brightness which is consistent with the real jump observed during the 29P/Schwassmann‐Wachmann 1 outbursts.  相似文献   

9.
Observations of comet Hale-Bopp (C/1995 O1) have been carried out near perihelion (1997 March) at millimeter wavelengths using the NRAO 12 m telescope. The J=1-->0, 2-->1, and 3-->2 lines of HCN at 88, 177, and 265 GHz were measured in the comet as well as the J=3-->2 lines of H13CN, HC15N, and HNC. The N=2-->1 transition of CN near 226 GHz was also detected, and an upper limit was obtained for the J=2-->1 line of HCNH+. From the measurements, column densities and production rates have been estimated. A column density ratio of [HCN]/[HNC] = 7+/-1 was observed near perihelion, while it was found that [HCN]/[HCNH+] greater, similar 1. The production rates at perihelion for HCN and CN were estimated to be Q(HCN) approximately 1x1028 s-1 and Q(CN) approximately 2.6x1027 s-1, respectively, resulting in a ratio of [HCN]/[CN] approximately 3. Consequently, HCN is sufficiently abundant to be the parent molecule of CN in Hale-Bopp, and HCNH+ could be a source of HNC. Finally, carbon and nitrogen isotope ratios of 12C/13C = 109+/-22 and 14N/15N = 330+/-98 were obtained from HCN measurements, in agreement with previous values obtained from J=4-->3 data. Such ratios suggest that comet Hale-Bopp formed coevally with the solar system.  相似文献   

10.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.  相似文献   

11.
Out of over 200 known short-period comets, we analyse a self-consistent list of 105 comets which have accurately estimated nuclei radii. It is found that both the median size and the size distribution index of these comets vary as a function of the perihelion distance, q , of the cometary orbit. A value of   q ≈ 2.7 au  divides the comets into an outer solar system group which are hardly affected by decay, and an inner solar system group which are decaying quickly. It is estimated that 10, 20 and 30 per cent of the 105 comets will have decayed away after 1000, 2000 and 3000 yr, respectively.  相似文献   

12.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   

13.
Comet C/1999 S4 was observed with the 2m-telescopes of the Bulgarian National Observatory and Pik Terskol Observatory, Northern Caucasus, Russia, at the time of its disintegration. Maps of the dust brightness and color were constructed from images obtained in red and blue continuum windows, free from cometary molecular emissions. We analyze the dust environment of Comet C/1999 S4 (LINEAR) taking into account the observed changes apparent in the brightness images and in plots of Afρ profiles as function of the projected distance ρ from the nucleus. We also make use of the syndyne-synchrone formalism and of a Monte Carlo model based on the Finson-Probstein theory of dusty comets. The brightness and color of individual dust particles, which is needed to derive theoretical brightness and color maps of the cometary dust coma from the Monte Carlo model, is determined from calculations of the light scattering properties of randomly oriented oblate spheroids. In general, the dust of Comet C/1999 S4 (LINEAR) is strongly reddened, with reddening values up to 30%/1000 Å in some locations. Often the reddening is higher in envelopes further away from the nucleus. We observed two outbursts of the comet with brightness peaks on July 14 and just before July 24, 2000, when the final disintegration of the comet started. During both outbursts an excess of small particles was released. Shortly after both outbursts the dust coma “turns blue.” After the first outburst, the whole coma was affected; after the second one only a narrow band of reduced color close to the tail axis was formed. This difference is explained by different terminal ejection speeds, which were much lower than normal in case of the second outburst. In particular in the second, final outburst the excess small particles could originate from fragmentation of “fresh” larger particles.  相似文献   

14.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

15.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We build an accurate data base of 5200 HCN and HNC rotation–vibration energy levels, determined from existing laboratory data. 20 000 energy levels in the Harris et al. linelist are assigned approximate quantum numbers. These assignments, lab-determined energy levels and Harris et al. energy levels are incorporated in to a new energy level list. A new linelist is presented, in which frequencies are computed using the lab-determined energy levels where available, and the ab initio energy levels otherwise.
The new linelist is then used to compute new model atmospheres and synthetic spectra for the carbon star WZ Cas. This results in better fit to the spectrum of WZ Cas in which the absorption feature at 3.56 μm is reproduced to a higher degree of accuracy than has previously been possible. We improve the reproduction of HCN absorption features by reducing the abundance of Si to [Si/H]=−0.5 dex, however, the strengths of the Δ v = 2 CS band heads are overpredicted.  相似文献   

17.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

18.
We studied the radio source associated with the ultraluminous X-ray source in NGC 5408  ( L X≈ 1040 erg s−1)  . The radio spectrum is steep (index  ≈−1  ), consistent with optically thin synchrotron emission, not with flat-spectrum core emission. Its flux density (≈0.28 mJy at 4.8 GHz, at a distance of 4.8 Mpc) was the same in the March 2000 and December 2004 observations, suggesting steady emission rather than a transient outburst. However, it is orders of magnitude higher than expected from steady jets in stellar-mass microquasar. Based on its radio flux and spectral index, we suggest that the radio source is either an unusually bright supernova remnant, or, more likely, a radio lobe powered by a jet from the black hole (BH). Moreover, there is speculative evidence that the source is marginally resolved with a radius ∼30 pc. A faint H  ii region of similar size appears to coincide with the radio and X-ray sources, but its ionization mechanism remains unclear. Using a self-similar solution for the expansion of a jet-powered electron–positron plasma bubble, in the minimum-energy approximation, we show that the observed flux and (speculative) size are consistent with an average jet power  ≈ 7 × 1038 erg s−1∼ 0.1 L X∼ 0.1 L Edd  , an age ≈105 yr, a current velocity of expansion ≈80 km s−1. We briefly discuss the importance of this source as a key to understand the balance between luminosity and jet power in accreting BHs.  相似文献   

19.
We have studied the chemistry of the molecular gas in evolved planetary nebulae. Three pseudo-time-dependent gas-phase models have been constructed for dense (104–105 cm−3) and cool ( T ∼15 K) clumpy envelopes of the evolved nebulae NGC 6781, M4-9 and NGC 7293. The three nebulae are modelled as carbon-rich stars evolved from the asymptotic giant branch to the late planetary nebula phase. The clumpy neutral envelopes are subjected to ultraviolet radiation from the central star and X-rays that enhance the rate of ionization in the clumps. With the ionization rate enhanced by four orders of magnitude over that of the ISM, we find that resultant abundances of the species HCN, HNC, HC3N and SiC2 are in good agreement with observations, while those of CN, HCO+, CS and SiO are in rough agreement. The results indicate that molecular species such as CH, CH2, CH2+ , HCl, OH and H2O are anticipated to be highly abundant in these objects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号