首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Four gravity cores from the eastern Norwegian Sea are studied. Absolute accumulation rates are quantified and variations in carbonate sedimentation and their implications for the paleo-oceanographic history of the Norwegian Sea are described. In the eastern Norwegian Sea, interglacial, ice-free conditions were developed during oxygen-isotope stages 1 and 5e. Open water conditions were probably the norm during the summer season, also during glacial stages. Slightly elevated summer temperatures in periods during isotope stages 2 and 7 are demonstrated by increased contents of subpolar planktic foraminifera. The deep waters of the eastern Norwegian Sea have been well oxygenated during most of the last 250,000 years. Organic-rich sediments and intensive carbonate dissolution in some parts of isotope stages 4 and 6 indicate corrosive bottom waters. A permanent ice cover and low saline surface waters, as found in the Arctic Ocean today, may have been developed in these periods. Well-preserved foraminiferal assemblages from stage 2 show more oxygenated bottom waters and more effective bottom water renewal in this period than during stage 3.  相似文献   

2.
BOREAS Kellogg, T. B., Duplessy, J. C. & Shackleton, N. J. 1978 03 01: Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea deep-sea cores. Boreas. Vol. 7, pp. 61–73. Oslo. ISSN 0300–9483.
Three Norwegian Sea deep-sea cores, which penetrate to sediments at least 200,000 years old, were analyzed for oxygen isotope content, total calcium carbonate, and planktonic foraminifera. The oxygen isotopic stratigraphy was used to refine the time control for paleoclimatic and paleo-oceanographic events previously described for the region. Two pulses of relatively warm subpolar water entered the region between 124,000 B.P. and 115,000 B.P. (the last interglacial), and since about 13,000 B.P. The remaining portion of the last 150,000 years was characterized by extensive ice cover. The magnitude of the change in isotopic composition between peak glacial and peak interglacial conditions is larger than can be explained by the changing isotopic content of the oceans alone suggesting that large temperature and salinity effects are recorded in isotope curves from Norwegian Sea isotope curves. The magnitude of the isotopic change from substage 5e to 5d (greater than 1%) is attributed to a combination of changing oceanic isotopic composition combined with a large temperature effect due to a sudden sea-surface temperature decrease of about 6oC. The persistence of heavy isotope values throughout substages 5d through 5a may be related to the sea-ice cover which prevented dilution of the isotopically heavy waters by isotopically light run-off. Sedimentation rates calculated for each of the isotope stages show large changes from one stage to another with some tendency for odd numbered stages to have higher rates.  相似文献   

3.
Quantitative analyses of planktic foraminifera, sea‐surface temperatures (SSTs), oxygen isotope and radiocarbon dating from a deep‐sea core recovered in the South Adriatic Sea have been used to reconstruct a subcentennial climatic and biochronological record since the late glacial (the last 24 cal. ka BP). The identification and relative abundance of 25 species of planktic foraminifera along the core have provided a continuous record of the faunal changes over this time interval. These results have permitted the establishment of 10 biozones in the South Adriatic Sea based on the appearance and/or disappearance of the main specific taxa, from peaks of abundance and/or by modification in marine conditions. The robust chronology of the South Adriatic core allowed correlation of SST estimates to the GISP2 ice core record, indicating that the main climate changes recorded in Greenland ice cores over the last 24 ka are recorded and globally synchronous with those observed in the South Adriatic Sea. This finding further allows comparison of the planktic foraminifera record with the event stratigraphic scheme proposed by the INTIMATE group in order to better identify the relationship between past climatic changes and the response of microfaunal assemblages in the South Adriatic. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Stable carbon and oxygen isotopes of the polar planktic foraminifera Neogloboquadrina pachyderma sinistral from sediment cores of the Norwegian Sea reveal several anomalous 13C and δ18O depletions in the surface water during the last glacial to interglacial transition and during the later Holocene. The depletions that are observed between the Last Glacial Maximum (LGM) and the end of the main deglacial phase were caused by massive releases of freshwater from thawing icebergs, which consequently resulted in a stratification of the uppermost surface water layer and a non-equilibrium between the water below and the atmosphere. At ~8.5 ka (14C BP) this strong iceberg melting activity ceased as defined by the cessation of the deposition of ice-rafted detritus. After this time, the dominant polar and subpolar planktic foraminiferal species rapidly increased in numbers. However, this post-deglacial evolution towards a modern-type oceanographic environment was interupted by a hitherto undescribed isotopic event (~7–8 ka) which, on a regional scale, is only identified in eastern Norwegian Sea surface water. This event may be associated with the final pulse of glacier meltwater release from Fennoscandia, which affected the onset of intensified coastal surface water circulation off Norway during a time of regional sea-level rise. All these data indicate that surface water changes are an integral part of deglacial processes in general. Yet, the youngest observed change noted around 3 ka gives evidence that such events with similar effects occur even during the later Holocene when from a climatic point of view relativelystable conditions prevailed.  相似文献   

5.
Synoptically mapped faunal abundance and faunal composition data, derived from a suite of 24 Norwegian Sea cores, were used to derive sea-surface temperatures for the last glacial maximum (18,000 B.P.), the last interglacial (120,000 B.P.), and isotope stage 5a (82,000 B.P.). Surface circulation and ice cover reconstructions for these three times, deduced from the sea-surface temperatures, suggest the following conclusions: (1) During glacial periods, Norwegian Sea surface circulation formed a single, sluggish, counterclockwise gyre that was caused by wind drag on the ubiquitous sea ice cover; (2) the last interglacial was characterized by a circulation pattern similar to that of today except that the two counterclockwise gyres were displaced toward the east and were more vigorous than they are today. This circulation pattern forced the Norwegian Current into a position close to the coast of Norway and permitted formation of a strong east-west temperature gradient close to the Scandinavian landmass; (3) interglacial periods prior to 120,000 B.P. had similar climatic conditions to the 82,000 B.P. level and were characterized by a weak two-gyre circulation pattern. The southern gyre, driven by wind stress in summer months, was ice covered in winters. The northern gyre had little open water even in summers and was primarily formed by wind drag on sea ice. Atmospheric modifications resulting from these circulation patterns and sea ice conditions produced varying climatic conditions in Scandinavia during interglacials prior to the Holocene. The climate was probably warmer and moister during the last interglacial (Eemian) than it is today. Other interglacials during the last 450,000 years, but prior to the Eemian, were probably colder and drier as the Norwegian Sea was not an important source of heat and moisture.  相似文献   

6.
Surface ocean circulation in the Norwegian Sea 15,000 B.P. to present   总被引:1,自引:0,他引:1  
Quantitative studies of foraminifera and radiolaria, semi-quantitative analyses of diatoms and coccoliths, and the distribution of ice-rafted sediments have been performed on cores from the southeastern Norwegian Sea. The results document large variations in sea-surface temperatures and ocean circulation, showing a strong correlation between oceanic data and palaeoclimatic data from the neighbouring coastal areas of Norway. For the first time the Allerød – Younger Dryas climatic fluctuations and the Holocene climatic optimum are shown in records from the Norwegian Sea. Starting at about 13,000 B.P. the sea surface became seasonally ice-free with productive seasons. During the Allerød a narrow wedge of temperate Atlantic water flowed into the southeastern Norwegian Sea. In Younger Dryas time the surface waters cooled by several degrees. Holocene surface conditions were relatively constant, with somewhat higher temperatures in a period possibly corresponding with Atlantic time.  相似文献   

7.
New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.  相似文献   

8.
越南岸外晚第四纪上升流与东亚夏季风变迁   总被引:16,自引:3,他引:13       下载免费PDF全文
通过对南海西部越南岸外17954—3柱状样中浮游和底栖有孔虫的定量分析,结合碳酸钙、有机碳和稳定同位素数据,获得南海西部上升流区近20万年来的古海洋学记录,进而讨论了晚第四纪东亚夏季风的变迁。结果表明,在间冰期,尤其是末次间冰期,越南岸外出现表层海水古温度低、温跃层浅、生产力高,同时底层海水富营养的现象,说明上升流的存在,且该上升流有从氧同位素5期(MIS5期)向1期逐渐减弱的趋势。结合南海现代海流及生产力分布的研究,推断该上升流由东亚夏季风驱动,其强弱的变化说明,东亚夏季风在近20万年来有间冰期增强、冰期减弱,且从MIS5期向MIS1期递减的特征。  相似文献   

9.
Fluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.  相似文献   

10.
Climatic reconstruction of glacial to interglacial episodes from oxygen isotopes in sediment cores from the Nordic seas is complicated by strong local meltwater contributions to the oxygen isotope changes. Combination of benthic and planktic foraminiferal isotope data with foraminiferal abundances and ice-rafted debris (IRD) allows separation of local and global effects and subdivision of the marine oxygen isotope events 6.2–5.4, which include the last interglaciation, into: (1) a meltwater phase after glacial stage 6, recorded by large amounts of IRD and low foraminiferal abundance, indicating surface water warming; (2) an IRD-free period with high deposition rates of subpolar foraminifera and other CaCO3pelagic components, recognized here as the “full” interglaciation; and (3) a phase with the recurrence of IRD and the demise of subpolar species. Comparison of ice-core records and marine data implies that the global climate during the last full interglaciation and that during the postdeglacial Holocene were similar. The records show no significantly different variations in the proxy data. In contrast, the oxygen isotopes of planktic foraminifera and ice cores indicate significant differences during each of the deglacial transitions (Terminations I and II) that preceded these two interglaciations. These suggest that during Termination II the climatic evolution in the Nordic seas was less affected by abrupt changes in ocean–atmosphere circulation than during the last glacial to interglacial transition.  相似文献   

11.
Foraminiferal biostratigraphy, stable isotopes and amino-acid diagenesis have been investigated in a 125 m (+ 1 to — 124 m a.s.l.) long core from Jæren, southwestern Norway. Two marine units, the 42 m thick Grødeland Sand and the 8 m thick Sunde Sand, were found between till beds. Based on the biostratigraphic data, nine foraminiferal assemblage zones are defined. The Grødeland Sand shows a development from an ice-proximal glacial environment in the lower part, through an arctic, possibly shallow-water, environment, into a full interglacial open-shelf regime (the Grødeland Interglacial). The Grødeland Interglacial sediments (zone 6 Cassidulina laevigata-Cibicides zone) were deposited at a water depth of 20 m, in an open, high-energy shelf environment with temperature conditions similar to those prevailing in the northern North Sea today. The interglacial sediments are followed by deposits characteristic of an arctic environment which become more ice proximal upwards. Superimposed on the Grødeland Sand is a diamicton interpreted as till. Above the till is the upper marine unit (the Sunde Sand), which in the lower part yielded a shallow-water arctic fauna replaced upwards by an ice-proximal facies. The upper part of the Sunde Sand is barren of foraminifera and is superimposed by an upper till. The Sunde Interstadial is defined as a climatostratigraphic event resulting in deglaciation of western Norway and deposition of the Sunde Sand. Based on amino acid geochronology and inferences from the biostratigraphy, the Grødeland Interglacial is assigned to oxygen-isotope stage 7, whereas the Sunde Interstadial is assigned to the Early Weichselian. Combined with existing data from the North Sea region and the Norwegian Sea, it is concluded that for stage 7, in addition to stages 1 and 5e, there must have been a strong influx of Atlantic water into the Norwegian Sea north of the British Isles. This circulation created a similar north-south gradient in water masses in the North Sea to that which occurred during the Eemian and the Holocene. In the Nordic Seas, however, the stage 7 warm influx was probably restricted to the eastern part of the basin, unlike the later warm periods. This led to the development of fully interglacial conditions in the North Sea region, even though the palaeoceanographic data from the central part of the Nordic Seas suggest relatively cooler conditions for oxygen-isotope stage 7.  相似文献   

12.
Changes in the concentrations of atmospheric greenhouse gases are an important part of the global climate forcing. The hypothesis that benthic foraminifera are useful proxies of local methane emission from the seafloor has been verified on sediment cores by numerous studies. The calcium carbonate (CaCO3) content and the high-resolution carbon and oxygen isotope composition of the benthic foraminifera from the core 08CF7, from the northeastern Shenhu gas hydrate drilling area in the Baiyun Sag of the northern South China Sea were analyzed, and the benthic foraminifera’s evidence for methane release from gas hydrate decomposition are presented here for the first time. Two rapid obvious carbon isotope negative excursions were observed in the oxygen isotope stage boundaries 5d/5c and 6/5e (penultimate deglaciation, about 130 ka) of the cold-to-warm climatic transition period. The largest negative value of δ13C is about ?2.95 ‰, and the whole change of carbon and oxygen isotope is strikingly similar and is in consonance with the atmospheric methane concentration recorded by the Vostok ice core and the carbon isotopic record from Lake Baikal. Combining these results with the analysis of the geological conditions of the study area and the fact that gas hydrate exists in the surrounding area, it can be concluded that the carbon isotope negative excursions of the benthic foraminifera in the northern South China Sea are associated with methane release from gas hydrate decomposition due to deglacial climate warming. By recording the episodes of massive gas hydrate decomposition closely linked with the northern hemisphere temperatures during major warming periods, the new δ13C record from the Baiyun Sag provides further evidence for the potential impact of gas hydrate reservoir on rapid deglacial rises of atmospheric methane levels.  相似文献   

13.
We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial–interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.  相似文献   

14.
In order to contribute to our understanding of the linkage between climate and ocean circulation we have studied benthic foraminifera from near the northern end of the Faeroe–Shetland Channel covering isotope stages 6 to lower stage 3 (∼150–55 ka). Our records demonstrate shifts between recurring assemblages, which on millennial timescales monitor the outflow history of Norwegian Sea Deep Water. The records show that the outflow is closely linked to the climate of the region as documented in the Greenland ice cores. Outflow was relatively strong during all major warmer interstadials whereas there was no outflow during the colder stadials. During isotope substage 5e outflow was stable for ∼10–12 kyr with significant changes at the beginning and end only.  相似文献   

15.
Concentrations of Re and Os, and the isotopic composition of Os have been measured in the Japan Sea sediments to assess the response of the Japan Sea to glacial–interglacial climate change and associated weathering fluxes. The osmium concentrations in the sediment samples analyzed vary from 59 to 371 pg/g, and 187Os/188Os from 0.935 to 1.042. Only 187Os/188Os of sediment samples from dark laminations deposited under suboxic to anoxic conditions and having elevated concentrations of Re and Os, and with ≥ 80% hydrogenous Os are explained in terms of seawater composition. Lower 187Os/188Os were observed for sediments deposited during the last glacial maximum (LGM) when planktonic foraminifera from the Japan Sea recorded lighter oxygen isotopic composition. Decrease in dissolved Os fluxes from continents and/or change in the composition of the dissolved load to the Japan Sea are suggested as the driving mechanisms for the observed lower LGM 187Os/188Os. The results of this study, coupled with lower 187Os/188Os during the last glacial observed at other sites from ocean basins with different lithology and contrasting sediment accumulation rates, suggest that this trend is characteristic of the global oceans.

Data from this study show that the Japan Sea recorded higher 187Os/188Os during the current interglacial coinciding with excursions of oxygen isotopic compositions of planktonic foraminifera to heavier values. This is explained in terms of preferential release of 187Os during deglacial weathering and/or higher continental Os flux driven by warm and wet climate. This study demonstrates that Os isotopic composition of reducing margin sediments has immense potential to track variations in the seawater composition. In addition, 187Os/188Os of reducing sediments may be used to draw inferences about local paleoceanographic processes in semi-enclosed basins such as the Japan Sea.  相似文献   


16.
A study of the 140–100 ka interval in core T90-9P from the North Atlantic (45° N, 25° W), based on analysis of oxygen and carbon isotope records from planktonic and benthonic foraminifera, and from the bulk sediment fine fraction facilitates a detailed paleoceanographic reconstruction of the penultimate deglaciation (Termination II), and of the Eemian interglacial (δ18O stage 5e). The first step of Termination II was characterised by low productivity and a mixed water column, which was a remnant of glacial conditions. A 3 ka period of relatively stable conditions, with a stratified water column (‘Termination II pause’), occurred half-way through Termination II, and preceeded a second and more rapid climatic shift. The end of the deglaciation (Eemian maximum, i.e. isotopic event 5.53) initiated the establishment of strong, seasonal, water column stratification. North Atlantic Deep Water (NADW) production remained low during the complete glacial–interglacial transition. After the Eemian maximum, NADW prodution was restored, and bottom waters remained quite stable during the course of the Eemian, while surface waters gradually cooled in the second half of the stage. A short surface water cooling event accompanied by a reduced seasonal water column stratification and nutrient instability occurred at approximately 117 ka BP.  相似文献   

17.
Marine ash zones from the last interglacial period have been described from cores from the North Atlantic and an ash zone from the middle part of the interglacial has been observed in connection with a major cooling event. Here we present evidence for a coeval ash zone in a terrestrial site on the Faroe Islands. The investigated sediments are correlated with the upper part of oxygen isotope stage 5e and the beginning of stage 5d. The Eemian climatic optimum is represented in the lower part of the sequence close to the first occurrence of the ash zone. A tephra-based correlation suggests that the climatic optimum was synchronous with the marine record from the Norwegian Sea, but several thousand years later than in Eemian sections of west central Europe. However, many questions on the chronological relationship between the Eemian and oxygen isotope stage 5e still remain to be answered.  相似文献   

18.
李杰  旺罗 《地质学报》2002,76(3):409-412
通过对渤海沿岸末次冰期黄土中有孔虫化石的研究。发现含有主要生活在南黄海和东海水体较深的浮游有孔虫化石:Globigerina flaconensis、Globorotalia pumilio和Neogloboquadrina dutertrei,后者的含量高达6.4%,进一步对比沉积在不同地貌单元上黄土中有孔虫的丰度和浮游有孔虫化石出现的频率,发现沉积在北坡(阴坡)和南坡(阳坡)的有孔虫化石有显著的差异,北坡的有孔虫丰度和出现频次明显高于南坡,分析认为渤海沿岸的黄土不但具有西北风和东北风从渤海和北黄海搬运来的成分,还有东南风从南黄海和东海搬运带来的成分。  相似文献   

19.
Quantitative paleo-environmental analyses of planktonic foraminifera in 182 samples covering the past 130,000 years in North Atlantic deep-sea core V23-82 yield time series interpreted in terms of changing surface-water conditions. An absolute chronology is estimated by linear interpolation between levels dated by 14C or by stratigraphic correlation with other radiometrically dated climatic records. Significant events include: (1) rapid warming at 127,000 YBP, marking the start of the penultimate North Atlantic and European interglacial; (2) 124,000 YBP temperature maximum (Eemian); (3) 109,000 YBP cooling, correlated with the beginning of the last European glaciation (Würm), and representing a temporary cooling of the North Atlantic; (4) severe cooling 73,000 YBP, marking the start of the last full glacial regime in the North Atlantic; (5) short warm intervals within the last glacial regime dated at 59,000 YBP, 48,000 YBP, and 31,000 YBP; (6) rapid termination of the last glacial interval at 11,000 YBP; (7) a 6000 YBP hypsi-saline, followed by lowering salinity values presumably associated with decreasing flux of Gulf Stream waters over the core site.  相似文献   

20.
Two high-resolution loess-palaeosol sections from the Ob Loess Plateau (Iskitim) and the Minusinsk Basin (Kurtak 33) provide new detailed information on the last interglacial climate variations and landscape development in the parkland-steppe zone of southern Siberia. The complete last interglacial sensu lato (130-74 ka BP) records of the two sites, documented by magnetic susceptibility, grain-size, CaCO 3 and organic carbon content as proxy climatic data, and supplemented by thin-section studies, indicate several short warm and very cold intervals correlated with OIS 5e-5a. A strongly continental warm climate culminated around the peak of the last interglacial sensu stricto (OIS 5e) and cooler conditions occurred during the following interstadial stages (OIS 5c and 5a), corresponding to shifts in palaeolandscape development with gradual replacement of parkland-steppe and mixed southern taiga by boreal forest. During stadial stages (OIS 5d and 5b), the palaeolandscape was transformed into a cold arid periglacial tundra-steppe. Evidence for a major cooling in Siberia during OIS 5d, corroborating the palaeolimnological record from Lake Baikal, is provided by deep frost-wedge casts distorting the OIS 5e chernozemic palaeosol, suggesting formation of permafrost shortly after the last interglacial climatic optimum. The pedosedimentary record, reflecting the effects of syndepositional pedogenic processes, attests to a dynamic climate pulsation during the last interglacial stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号