首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Geochemical characteristics of marine sediment from the southern Drake Passage were analyzed to reconstruct variations in sediment provenance and transport paths during the late Quaternary. The 5.95 m gravity core used in this study records paleoenvironmental changes during the last approximately 600 ka. Down-core variations in trace element, rare earth element, and Nd and Sr isotopic compositions reveal that sediment provenance varied according to glacial cycles. During glacial periods, detrital sediments in the southern Drake Passage were mostly derived from the nearby South Shetland Islands and shelf sediments. In contrast, interglacial sediments are composed of mixed sediments, derived from both West Antarctica and East Antarctica. The East Antarctic provenance of the interglacial sediments was inferred to be the Weddell Sea region. Sediment input from the Weddell Sea was reduced during glacial periods by extensive ice sheets and weakened current from the Weddell Sea. Sediment supply from the Weddell Sea increased during interglacial periods, especially those with higher warmth such as MIS 5, 9, and 11. This suggests that the influence of deep water from the Weddell Sea increases during interglacial periods and decreases during glacial periods, with the degree of influence increasing as interglacial intensity increases.  相似文献   

2.
司贺园  侯雪景  丁旋 《现代地质》2011,25(3):482-488
通过对取自鄂霍次克海南部的柱状岩心OS03-1的古海洋学研究,包括浮游有孔虫壳体AMS14C测年、底栖有孔虫壳体δ18O分析、蛋白石含量测定、有机碳含量测定、浮游有孔虫组合、冰筏碎屑含量变化、沉积物粒度分析等内容,建立鄂霍次克海OS03-1岩心年代地层学框架,分析该海区古表层海水温度、古生产力变化,并研究其古环境意义。结果表明,Neogloboquadrina pachyderma(sin.)百分含量变化曲线与Globigerina bulloides百分含量变化曲线呈很好的负相关性,与氧同位素曲线对比显示,两者均可作为该海区古温度替代性指标;浮游有孔虫绝对丰度、蛋白石含量、有机碳含量变化显示,研究区古生产力水平整体表现为间冰期较高、冰期较低;冰筏碎屑和沉积物粒度特征指示,鄂霍次克海南部间冰期陆源粗颗粒百分含量较冰期高。  相似文献   

3.
Variations in long chain alkenone-based sea surface temperature (SST) from a piston core (M04-PC1A) collected from the Korea Plateau in the East Sea (Sea of Japan) were investigated to understand paleoceanographic variations over the last 300,000 years. By combining sedimentological and geochemical proxies (the lithological marker of crudely laminated mud, alkenone SST, foraminiferal oxygen isotope values, and 14C age determination) and by comparison with previous works, we examined paleoceanographic variations back to Marine Isotope Stage (MIS) 8, approximately 300,000 years B.P. In particular, analysis of alkenones suggests that SSTs were about 8 °C and 11 °C lower during MIS 8 and MIS 6 than that in the present-day SST, respectively. Furthermore, SST was estimated to be 5 °C lower during the Last Glacial Maximum. These significant SST differences among MIS 8, 6, and 2 may be attributable to not only the formation of distinctive water masses, but also to differential alkenone synthesis under different environmental conditions. These results suggest that SSTs in the East Sea during the last three glacial periods (MIS 8, 6, and 2) were different, but rather were closely linked with regional oceanographic conditions overlapped with sensitive responses to the intensity of the East Asian monsoon. Surface-water freshening was a local paleoceanographic consequence that was imprinted in the core during MIS 2 and MIS 6, and potentially during MIS 4. Furthermore, alkenone-based SST data suggested that surface water circulation and biological productivity were strongly associated with the inflow of the Tsushima Warm Current during interglacial periods.  相似文献   

4.
文章以南海北部ODP1146站沉积物岩芯为研究材料,利用浮游有孔虫次表层水种Pulleniatina obliquiloculata壳体的氧、碳稳定同位素,结合该站位浮游及底栖有孔虫氧碳同位素数据,分析中更新世以来南海北部上层水体结构的演化。1.2 Ma以来ODP1146站P.obliquiloculata壳体δ^18O的变化可分3个阶段:1)1.2~0.9 Ma,冰期-间冰期变化幅度较小、主导周期为41 ka斜率周期;2)0.9~0.6 Ma,冰期旋回变化幅度逐渐增强、100 ka偏心率周期开始强化;3)0.6 Ma以来,冰期旋回呈现稳定且幅度较大的100 ka周期变化。0.9 Ma以来南海北部上层海水δ^18O的冰期旋回变幅增强,可能反映东亚冬季风在0.9 Ma之后显著强化。其中,表层水体δ^18O只在冰期变幅增强,P.obliquiloculata所反映的次表层水体δ^18O的变化幅度在冰期和间冰期都显著增强。约0.9 Ma浮游和底栖有孔虫δ^18O的100 ka周期几乎同时显现;但在0.9~0.6 Ma时期P.obliquiloculata的δ^18O偏心率周期更为显著、斜率周期的强度也更高。因此,冰期旋回周期转型及幅度变化两方面的证据共同反映温跃层结构演化在南海北部中更新世转型(MPT)气候转变过程中的特殊性。1.2 Ma以来ODP1146站P.obliquiloculata的δ^13C在0.02 Ma、0.49 Ma和0.99 Ma左右呈明显的碳重值,同时表层种-次表层种之间的δ^13C差值减小到近于0,可以解读为碳重值事件期间南海北部生产力相对减弱。  相似文献   

5.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

6.
《Quaternary Science Reviews》2007,26(5-6):808-827
During the Late Pliocene–Middle Pleistocene, 56 species and 15 genera of elongate, cylindrical benthic foraminifera disappeared from the deep sea in the South China Sea (ODP Sites 1143 and 1146) as part of the last global extinction in the deep sea. This extinction group (Ext. Gp) exhibited a pulsed decline in abundance and species richness mostly during glacials, and often associated with periods of expansion of polar ice that resulted from increased cooling of the Earth's climate since ∼2.5 Ma, particularly during the Mid-Pleistocene Climate Transition (MPT, 1.2–0.6 Ma). We infer that the Ext. Gp decline in abundance and disappearance was a result of the increased glacial cooling and consequent increased ventilation of the deep-sea water masses. The detailed record of withdrawal of the Ext. Gp differs between the two sites, with far more disappearances occurring prior to the MPT in the deeper Site 1143 (2772 m) than in the shallower Site 1146 (2092 m). The Late Pliocene and Early Pleistocene declines in deeper parts of the South China Sea (Site 1143) may have resulted from enhanced glacial production of deep, southern-sourced water passing over the sill into the basin from the North-west Pacific. During the MPT however, the Ext. Gp declines and disappearances were of similar timing and magnitude in both sites, implying that both were influenced by the same deep-water mass during glacials at this time. This could have been North Pacific Deep Water, which many workers infer was formed in the northern Pacific during the last glacial, and may have begun forming during MPT glacials, in association with the progressively enhanced cooling of the Northern Hemisphere.  相似文献   

7.
孟加拉湾晚第四纪浮游有孔虫及其古海洋学意义   总被引:7,自引:1,他引:6  
丁旋  方念乔 《现代地质》1999,13(1):37-42
对北印度洋孟加拉深海扇远源区水深约3800m的MD77190岩心进行了有孔虫定量统计,CaCO3质量分数分析和敏纳圆幅虫壳体氧、碳同位素分析,结果表明,该区近130ka来的浮游有孔虫组合面貌、表层海水古温度、CaCO3质量分数变化的总体趋势与各大洋资料可以对比。CaCO3质量分数曲线表现为间冰期升高而冰期降低,反映了研究区陆源碎屑物质对CaCO3浓度具有明显的稀释效应。溶解度曲线也表现出相同的变化趋势,同样与陆源物质输入量的变化有关。研究区氧同位素3期各种沉积特征与北印度洋区的季风活动有关,表现出明显的高频气候旋回变化特点。  相似文献   

8.
南海具有典型边缘海特征,其北部陆坡由于具有高沉积速率的地层剖面,可以用于研究亚轨道尺度气候变化。本研究以南海北部陆坡下部MD12 3432柱状样(19°16.88′N,116°14.52′E,水深2 125 m)为主要研究材料,分析其粗组分百分含量、底栖有孔虫丰度和特定环境指示属种的百分含量与丰度,并结合相关研究结果,运用多指标综合分析,重建了南海北部陆坡MIS 11期(距今约40万年)以来的表层初级生产力和底层水溶解氧含量的演化情况。与之前研究不同,本研究发现MIS11期以来南海北部的古生产力在温暖的间冰期高、在寒冷的冰期低,且主要受控于东亚夏季风影响下低纬地区降水强度的变化。在MIS 7期和MIS 9期可能有较高溶解氧含量的底层水进入南海北部,导致在高生产力的暖期中,喜氧的低生产力指示种Cibicidoides wuellerstorfi丰度增加。  相似文献   

9.
We have analyzed core MD01-2392, ∼ 360 km east of the Mekong River mouth in the South China Sea (SCS). Over the past 500 ka, planktonic foraminiferal oxygen-isotopic values are consistently lighter than northern SCS and open-ocean records by up to 0.5‰, indicating the influence of run-off from the Mekong River during both glacial and interglacial periods. Carbonate content is higher during interglacials; sedimentation rates were higher during glacials. Increased sedimentation rates since 30 ka imply increased run-off during the last glacial maximum and Holocene Period. Contrary to general experience, in which it is classed as a warm species for temperature estimates, the thermocline-dwelling species Pulleniatina obliquiloculata increased its numbers during glacial periods. This implies an estuarine circulation and even brackish-water caps during glacial periods, reinforcing the sense of strong run-off. In an overall decline of warm water, the thermocline shoaled stepwise, with rapid rises across the glacial terminations. We infer that the southern SCS was opened to an influx of Indian Ocean waters through southern passages at those times of rising sea levels.  相似文献   

10.
We describe the evolution of climate system dynamics by examining the climate response to changes in obliquity and precession over the last 5.3 Myr. In particular, we examine changes in the shape of glacial cycles and the power of obliquity and precession response in benthic δ18O. When the exponential trend in δ18O variance is removed, its spectral power exhibits strong, proportional responses to amplitude modulations in orbital forcing over most of the Plio–Pleistocene. Precession responses correlate with modulations in forcing for the last 5 Myr, but 41-kyr response is sensitive to obliquity modulation only before 1.4 Myr. Where responses are sensitive to modulations in forcing, we demonstrate that glacial cycles are orbitally forced rather than being self-sustained or paced by orbital changes. The shapes of glacial cycles have several nonlinear properties, which may be indicative of glacial–interglacial differences in climate sensitivity or response time. The “saw-tooth” asymmetry of glacial cycles first appears shortly after the onset of major northern hemisphere glaciation, and the relative duration of interglacial stages decreases at 1.4 Myr. Collectively, trends in the shape of glacial cycles and the sensitivity of δ18O to obliquity and precession are suggestive of major transitions in climate dynamics at approximately 2.5 and 1.4 Myr but show no significant change associated with the appearance of strong 100-kyr cycles during the mid-Pleistocene transition.  相似文献   

11.
Fluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.  相似文献   

12.
《Quaternary Science Reviews》2007,26(3-4):500-516
We use lake sediment records from an epishelf lake on Alexander Island to provide a detailed picture of the Holocene history of George VI Ice Shelf (GVI-IS). Core analyses included; micropaleontology (diatoms/foraminifera), stable isotope (δ18O, δ13C), geochemistry (total organic carbon (TOC), total nitrogen (TN), C/N ratios) and grain-size analyses. These data provide robust evidence for one period of past ice shelf absence during the early Holocene. The timing of this period has been constrained by 10 AMS 14C dates performed on mono-specific foraminifera samples. These dates suggest that GVI-IS was absent between c 9600 cal yr BP and c 7730 cal yr BP. This early Holocene collapse immediately followed a period of maximum Holocene warmth that is recorded in some Antarctic ice cores and coincides with an influx of warmer ocean water onto the western Antarctic Peninsula (AP) shelf at c 9000 cal yr BP. The absence of a currently extant ice shelf during this time interval suggests that early Holocene ocean-atmosphere variability in the AP was greater than that measured in recent decades.  相似文献   

13.
The Norwegian Channel Ice Stream (NCIS) is one the defining features of the Fennoscandian icesheet. Still little is known of the detailed dynamics of this ice stream in relation to regional changes in ice cover, paleoceanographic and climatic changes. Sedimentological data from core MD99-2283 in combination with seismic data allow a detailed chronological reconstruction of the outbuilding of the margin and the ice extent in southern Scandinavia through the last 150 ka. An integrated stratigraphy of the margin is presented and compared to the glacial history. Changes in the regional ice cover are reflected in the accumulation rates, the clay mineralogy, the coarse chalk fraction and the number of IRD >2 mm in core MD99-2283, while the sedimentation on the North Sea Fan as derived from seismic data provides direct evidence for the glacial activity at the shelf edge. Tentative evidence was found for two Early Weichselian glacial advances in southern Scandinavia and possibly Scotland at around 110 and 80 ka BP. From 42 cal ka BP the ice cover expanded in southern Fennoscandia and led to increased deposition on the margin and the occurrence of local melt water outbursts. Significantly increased accumulation rates, coarse chalk, local meltwater output and smectite occur during the ice expansion in the North Sea from around 34 cal ka BP. The main outbuilding phase of the NSF during the last glacial cycle occurred after 30 cal ka BP. From around 24 cal ka BP the NCIS became highly active and advanced at least three times prior to the final retreat from the shelf edge around 19.0 cal ka BP.  相似文献   

14.
根据南海西部越南岸外MD05-2901岩芯成对的有孔虫壳体氧同位素和U3k7′-SST计算出过去450ka以来南海西部表层海水氧同位素~δ18Owater和盐度Swater变化记录,二者的变化范围在冰期分别为0.2‰~0.6‰和34.2‰~35.1‰,间冰期分别为-0.6‰~0和32.4‰~33.7‰,表现为冰期高、间冰期低的特征。相反扣除冰盖影响后的剩余氧同位素~δ18Oresid和剩余盐度Sresid,呈现冰期低、间冰期高的特征,在冰期分别平均为-0.5‰和32.7‰,间冰期分别平均为-0.3‰和33.1‰。研究认为该现象主要与赤道太平洋海域冰期纵向的ITCZ平均位置偏南导致的降雨增加有关,同时冰期温度低蒸发弱,间冰期温度高蒸发强以及冰期海平面下降,南海地理格局的改变、河流输入增多等因素也有一定影响。  相似文献   

15.
We present an array of new proxy data and review existing ones from core Fr1/94-GC3 from the East Tasman Plateau. This core is positioned at the southern extreme of the East Australia Current and simultaneously records changes in both oceanography and environments both in offshore and in southeastern Australia. Microfossils, including planktonic and benthic foraminifera, ostracods, coccoliths and radiolarians, were studied to interpret palaeo-oceanographic changes. Sea-surface temperature was estimated using planktonic foraminifera, alkenones and radiolaria. From the silicate sediment fraction, the mean grain size of quartz grains was measured to detect the changes in wind strength. An XRF scan of the entire core was used to determine the elemental composition to identify provenance of the sediment. We also compare these data with a pollen record from the same core provided in an accompanying article that provides the longest well-dated record of vegetation change in southeastern Australia. In an area of slow sedimentation, Fr1/94-GC3 provides a continuous record of change in southeastern Australia and the southern Tasman Sea over approximately the last 460?ka. We determine that the East Australian Current varied in intensity through time and did not reach the core site during glacial periods but was present east of Tasmania during all interglacial periods. The four glacial–interglacial periods recorded at the site vary distinctly in character, with Marine Isotope Stage (MIS) 9 being the warmest and MIS 5 the longest. Through time, glacial periods have progressively become warmer and shorter. Deposition of airborne dust at the core site is more substantial during interglacial periods than glacials and is believed to derive from mainland Australia and not Tasmania. It is likely that the source and direction of the dust plume varied significantly with the wind regimes between glacials and interglacials as mean effective precipitation changed.  相似文献   

16.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

17.
北印度洋季风研究的经典地区是上升流活跃的阿拉伯海和索马里海盆,孟加拉湾地区季风强弱的变化则是以浮游有孔虫壳体氧同位素值反映的淡水输入量大小来指示的.文章通过对孟加拉湾的MD77181岩芯的浮游有孔虫定量分析、氧碳稳定同位素分析,对比东经90°海岭的MD81349岩芯的同类分析结果,发现孟加拉湾地区在深海氧同位素2、3期出现上升流生物种丰度上升、表层水古生产力升高、表层水温度下降、温跃层变浅、盐度增加等指示存在上升流活动的现象,说明当时该区东北冬季风增强.特别的是间冰段深海氧同位素3期各古环境的代用指标都形成记录上最突出的峰值,且在同期背景值上叠加着强烈的波动,认为此现象应是印度季风区夏季季风和冬季季风强盛期的相互转换、水体的垂直循环运动等环境信号和控制机制在该区的反映.  相似文献   

18.
《Gondwana Research》2014,26(4):1357-1368
Oceanic Anoxic Event 2 (OAE 2) during the Cenomanian–Turonian (C/T) transition caused stepwise marine extinctions. Using organic compounds, stable carbon and oxygen isotopes, and foraminifera from three depth-transect sections in northern Spain, this study revealed repeated anoxic/euxinic events coinciding with warming and stepwise extinctions of planktonic and/or benthic foraminifera within intermediate to surface waters in the proto-North Atlantic during the C/T transition. Those short-duration euxinic events occurred four times: at 93.95 Ma, marked by the extinction of Rotalipora greenhornensis; at 93.90 Ma, marked by the extinction of Rotalipora cushmani; at the mid-time maximum of the plateau of the δ13C of carbonates (93.70 Ma); and at the time of the C/T boundary (93.55 Ma). Furthermore, the main benthic foraminiferal extinctions occurred during the first and second euxinic events in the upper slope, during the second and third euxinic events in the outer to middle shelf, and during the third and fourth events in the middle shelf. The main euxinic events in each section also showed a progression to the shallow shelf. The main anoxia–extinction events occurred in the upper slope and outer shelf then moved to the middle shelf. The shallowest section had relatively weak anoxia and a proportionally low extinction rate. These new findings indicate that foraminiferal extinctions started from the intermediate water and the continental slope and then moved to the continental shelf. This was the result of the repeated progression of euxinic–anoxic water from the upper slope to the middle shelf on the eastern continental margin of the proto-North Atlantic four times during a 400 kyr period, to the end of the Cenomanian.  相似文献   

19.
We describe the environmental variation in the Banda Sea over the past 820 ka by using the magnetic parameters and oxygen isotope data from the core MD012380. Overall, characteristics of the magnetic parameters show simultaneous variation with marine isotope stage (MIS), especially in the last 420 ka. There are fewer, coarser and more oxidative magnetic minerals in glacial periods, and turn to opposite conditions in interglacial periods. Spectral results clearly present the Milankovitch periods over the last 820 ka, especially the eccentricity period (400-ka and 100-ka). However, the magnetic data shows different pattern before and after 420 ka. Thus, we segmented the time-series data into two periods: MIS 20 to MIS 12 and MIS 11 to MIS 1. During MIS 20 to MIS 12, the spectra of magnetic data show clear periods related to the obliquity (41-ka) and precession (23-ka and 19-ka), while they present only the eccentricity period (100-ka) during MIS 11 to MIS 1. This feature, which splits the late Pleistocene at around 420 ka, could be attributed to the mid-Brunhes event (MBE). In the Banda Sea, main factor controlling the variation of the magnetic minerals is considered as the fluctuation of the Indonesian Throughflow (ITF) intensity due to sea-level change. Thus, the magnetic data show clear 400-ka and 100-ka periods (main MIS cycle). Besides, the eccentricity signals are relatively dominant in the last ~420 ka, implying that the ITF might become more important after the MBE in the Banda Sea.  相似文献   

20.
《Quaternary Science Reviews》2005,24(12-13):1463-1478
The aragonite mineralogy and geochemistry of the mollusc faunas preserved at Navan and Bearbrook, Ontario, serve as proxies of original seawater chemistry. The composite section spanning 12,980–10,980 cal yr BP includes the Younger Dryas (YD) paleoclimatic oscillation. Oxygen isotopes demonstrate the onset of cooling with the YD event, in addition to the lowering of marine values by the influx of isotopically light glacial meltwater from Lake Agassiz. Impact of cooling and dilution is reduced or eliminated with the start of the Holocene, when water temperatures and salinities for Champlain Sea (CS) seawater were 8–16 °C and 27–34 ppt, respectively. Overall, oxygen isotope values deceased to −3.5% during the YD mainly due to freshening by glacial meltwater. Carbon isotopes confirm the rise in atmospheric CO2 concentration at the YD–Holocene transition. Marine strontium isotope values for the Allerød–YD–earliest Holocene range from 0.709151 (16,210 cal yr BP) to 0.709145 (12,980 cal yr BP) and 0.709142 (10,950 cal yr BP). The oceanographic changes recorded for the CS are in agreement with the evolutionary phases of Lake Agassiz and deglaciation dynamics of the Laurentide Ice Sheet. The volume and direction of meltwater discharge from Lake Agassiz alternated between the Gulf of Mexico during the Allerød, via the Great Lakes through the CS to the North Atlantic during the YD, and back to the Gulf of Mexico during the early Holocene, but with diminished impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号